General Mathematics marking guide

Sample external assessment 2020

Paper 2: Complex familiar and Complex unfamiliar (40 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.
An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.

External assessment marking guide

Short response
Question 1 (4 marks)

Sample response

b) $\mathrm{AB}, \mathrm{AC}, \mathrm{AD}, \mathrm{CE}$

Path Length	
AB	20
AC	400
AD	35
CE	2000
Total	2455

Total Cost $=2455 \times 2.5$

$$
=6137.5
$$

It will cost $\$ 6137.50$

The response
correctly constructs the network [1 mark]
correctly identifies the minimum spanning tree [1 mark]
determines total length [1 mark]
determines minimum cost with units [1 mark]

Sample response
Two-way table

Hours	Year 7	Year 12
≤ 2	15	2
2 to ≤ 4	53	11
>4	4	4
TOTAL	$\mathbf{7 2}$	$\mathbf{1 7}$

Percentage two-way table

Hours	Year 7	Year 12
≤ 2	20.8%	11.8%
2 to ≤ 4	73.6%	64.7%
>4	5.6%	23.5%
TOTAL	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 0 \%}$

The data suggests that there is an association between the hours spent practising the musical instrument each week and the student age group.
Older students practise more overall than younger students.
94% of Year 7 students practise less than 4 hours each week compared to 76% of Year 12 students.
88% of Year 12 students practise more than two hours each week compared to only 79% of Year 7 students.

The response
correctly represents the data in a two-way table [1 mark]
correctly represents the data in a percentage twoway table [1 mark]
suggests the presence of an association [1 mark]
provides reasons to support conclusion [1 mark]

Question 4 (3 marks)

Sample response
The response
Compare using effective interest rates

$$
\left.\begin{array}{l}
i_{e}=\left(1+\frac{i}{n}\right)^{n}-1 \\
\text { Option } 1 \\
2.4 \%+0.5 \%=2.9 \% \text { p.a } \\
i_{e}=\left(1+\frac{0.029}{4}\right)^{4}-1 \\
\quad=0.029316902 \\
\\
\approx 0.0293
\end{array} \quad \begin{array}{rl}
\text { An effective interest rat }
\end{array} \quad \begin{array}{rl}
\text { Option } 2 \\
2.4 \% \text { pa paid monthly }
\end{array}\right] \begin{aligned}
i_{e} & =\left(1+\frac{0.024}{12}\right)^{12}-1 \\
& =0.024265767 \\
& \approx 0.0243
\end{aligned}
$$

$2.4 \%+0.5 \%=2.9 \%$ p.a. paid quarterly

An effective interest rate of $\mathbf{2 . 9 3} \%$ p.a.

An effective interest rate of $\mathbf{2 . 4 3 \%}$ p.a.

Option 1 is the better investment because it offers the higher effective interest rate.
correctly calculates the effective interest rate for increasing the interest rate [1 mark]
correctly calculates the effective interest rate for interest paid monthly [1 mark]
determines better option [1 mark]

Sample response
a) Total Cost Matrix

$$
\begin{array}{cccc}
& B & C & D \\
K & 196 & 62 & 203 \\
L & 150 & 60 & 147 \\
M & 127 & 77 & 111
\end{array}
$$

Subtract the minimum from each row

	B	C	D
K	134	0	141
L	90	0	87
M	50	0	34

Only 1 line so,
Subtract the minimum from each column
B C D
$\begin{array}{llll}K & 84 & 0 & 107\end{array}$
$\begin{array}{rrrr}L & 40 & 0 & 53 \\ M & 0 & 0 & 0\end{array}$
Only 2 lines so,
Add 40 to each element in each line
B C D
$\begin{array}{llll}K & 84 & 40 & 107\end{array}$
$\begin{array}{llll}L & 40 & 40 & 53\end{array}$
$\begin{array}{llll}M & 40 & 80 & 40\end{array}$
Subtract 40 from every element

	B	C	D
K	44	0	67
L	0	0	13
M	0	40	0

3 lines so,

The response
correctly uses the row and column reduction method [1 mark]
uses the Hungarian algorithm [1 mark]
determines the bipartite graph [1 mark]

The response

Therefore:

Kate makes the chair (KC)
Luca makes the bookcase (LB)
Marcel makes the desk (MD)
b) Checking all combinations
$K B+L C+M D$
$=196+60+111$
$=367$
$K B+L D+M C$
$=196+147+77$
$=420$
$K C+L B+M D$
$=62+150+111$
$=323$
$K C+L D+M B$
$=62+147+127$
$=336$
$K D+L B+M C$
$=203+150+77$
$=430$
$K D+L C+M B$
$=203+60+127$
$=390$

Kate making the chair, Luca the bookcase and Marcel the desk is the cheapest option at $\$ 323$.
identifies who builds each piece of furniture [1 mark]
shows logical organisation communicating key steps [1 mark]
correctly identifies the six possible options [1 mark]
calculates cost of the six options [1 mark]
evaluates reasonableness of solution [1 mark]

Sample response

At midnight, the date goes forward by a day but changing sides of the date line would also forward the date by another day.

The result was in 2011, after midnight, Samoa went forward 2 days, skipping December 30th altogether

The time and date became 12:01am, December 31st, 2011.

The response
correctly explains the effect of the date line change [1 mark]
correctly determines the time [1 mark] correctly determines the date including the year [1 mark]

Question 7 (7 marks)

Sample response
Let $n=$ the number of years since 2010

For Chris: $t_{1}=67500$ and $t_{8}=84300$

Find d
$t_{n}=t_{1}+(n-1) d$
$84300=67500+7 d$
$\therefore 16800=\quad 7 d$
$\therefore 2400=d$

Rule for Chris
$t_{n}=t_{1}+(n-1) d$
$t_{n}=67500+2400(n-1)$
$t_{n}=2400 n+65100$

The response
correctly determines the parameter d [1 mark]
correctly determines the model for Chris [1 mark]

The response

```
For Sam: \(t_{5}=79500\) and \(t_{9}=87900\)
Find \(d\)
        \(t_{n}=t_{1}+(n-1) d\)
    \(87900=t_{1}+8 d \quad \ldots\) equation 1
    \(79500=t_{1}+4 d \quad \ldots\) equation 2
```

 Use elimination method equation 1 - equation 2
 \(\therefore 8400=4 d\)
 \(\therefore 2100=d\)
 Find \(t_{1}\)
 Sub \(d\) into equation 1
 $$
\begin{aligned}
\therefore 87900 & =t_{1}+8(2100) \\
\therefore 87900 & =t_{1}+16800 \\
\therefore \quad t_{1} & =71100
\end{aligned}
$$

Rule for Sam

$t_{n}=t_{1}+(n-1) d$
$t_{n}=71100+2100(n-1)$
$t_{n}=2100 n+69000$

When will they earn the same?

$$
\begin{aligned}
& 2400 n+65100=2100 n+69000 \\
& 300 n=3900 \\
& n=13
\end{aligned}
$$

Therefore, they will earn the same in 2023, so Chris will earn more in 2024.

Sample response

From the graphs, it is can be observed that:

- there is a very strong positive correlation between hours of sleep and overall percentage grades
- there is a strong negative correlation between the number of times a student is absent from class and overall percentage grades
I would advise getting plenty of sleep has a stronger impact on improving grades than attending all classes. However, doing both would be likely to have the greatest impact.

The response
correctly sketches a graph for 'Hours of sleep' [1 mark]
correctly sketches a graph for 'Classes missed' [1 mark]
determines the better predictor using a mathematical argument [1 mark]

Sample response
Seasonally adjust 2017 data

	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$
Summer	96.77	101.61	102.42
Autumn	98.04	101.96	103.92
Winter	100.00	101.39	104.17
Spring	100.97	102.91	103.88

Using the above as y data and incrementing each season from 1 to 12 (Summer 2015 to Spring 2017) as the x data to find the following rule.
$y=0.5992 x+97.609$
Mean rainfall by season in 2025 Multiply by SI (round to
whole no.)
$y(41)=122.1762$
151
$y(42)=122.7754$
125
$y(43)=123.3746$
$y(44)=123.9738$
$+\underline{128}$
493

In 2025 we forecast 151 mm of rain in Summer, 125 mm of rain in Autumn, 89 mm of rain in Winter and 128 mm of rain in Spring.

Mark
correctly seasonally adjusts the 2017 data [1 mark]
develops model for all the data [1 mark]
calculates 2025 rainfall for each season [1 mark]
shows logical organisation communicating key steps [1 mark]

