General Mathematics marking guide

Sample external assessment 2020

Paper 2: Complex familiar and Complex unfamiliar (40 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
- 2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.

An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.

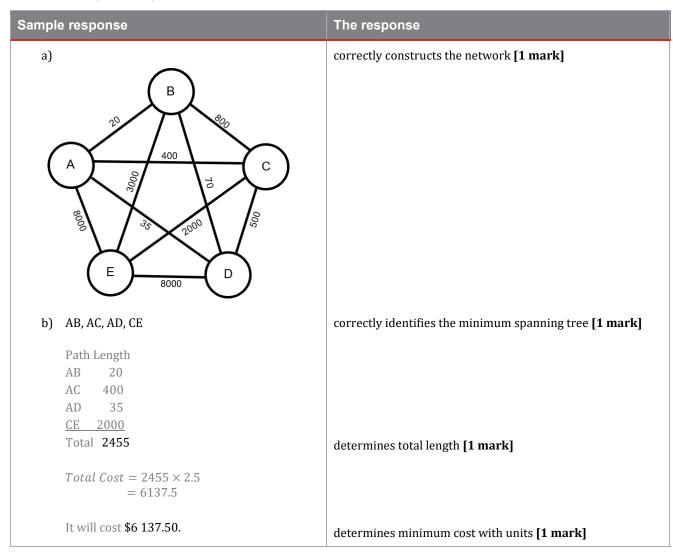
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

Where no response to a question has been made, a mark of 'N' will be recorded.


External assessment marking guide

Short response

Question 1 (4 marks)

Sample response	The response
Sara travels from Sydney to Johannesburg	
Departs Syd 6:15 Sat Syd time Travel <u>+14:18</u> Arrive Joh 20:33 Sat Syd time UTC correction <u>– 8:00</u> 12:33 Sat Joh time	correctly determines the arrival time in Johannesburg [1 mark] correctly determines the local time in Johannesburg [1 mark]
Marcus arrives in Johannesburg from Lima	
Arrive Joh 12:33 Sat Joh time Travel <u>-18:15</u>	
Departs Lima 18:18 Fri Joh time UTC correction <u>– 7:00</u>	
Marcus left Lima at 11:18am Friday local time.	determines local time and day in Lima [1 mark]
	shows logical organisation communicating key steps [1 mark]

Question 2 (4 marks)

Question 3 (4 marks)

Sample respons	ie
----------------	----

Two-way table

Hours	Year 7	Year 12
≤ 2	15	2
2 to ≤4	53	11
>4	4	4
TOTAL	72	17

Percentage two-way table

Hours	Year 7	Year 12
≤ 2	20.8%	11.8%
2 to ≤4	73.6%	64.7%
> 4	5.6%	23.5%
TOTAL	100%	100%

The data suggests that there is an association between the hours spent practising the musical instrument each week and the student age group.

Older students practise more overall than younger students.

94% of Year 7 students practise less than 4 hours each week compared to 76% of Year 12 students. 88% of Year 12 students practise more than two hours each week compared to only 79% of Year 7 students. correctly represents the data in a two-way table [1 mark]

The response

correctly represents the data in a percentage twoway table **[1 mark]**

suggests the presence of an association [1 mark]

provides reasons to support conclusion [1 mark]

Question 4 (3 marks)

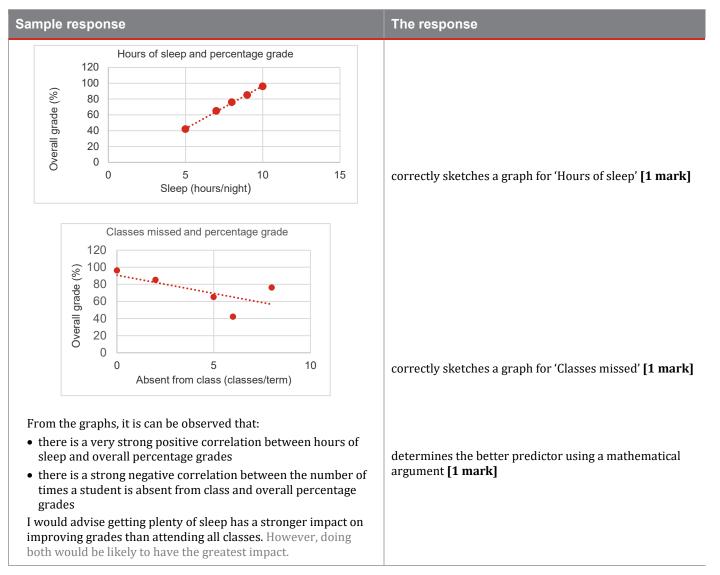
Sample response	The response
Compare using effective interest rates $i_e = \left(1 + \frac{i}{n}\right)^n - 1$ Option 1 2.4% + 0.5% = 2.9 % p.a. paid quarterly $i_e = \left(1 - \frac{0.029}{n}\right)^4$	
$i_e = \left(1 + \frac{0.029}{4}\right)^4 - 1$ = 0.029316902 \approx 0.0293 An effective interest rate of 2.93 % p.a.	correctly calculates the effective interest rate for increasing the interest rate [1 mark]
Option 2 2.4% pa paid monthly	
$\begin{split} i_e &= \left(1 + \frac{0.024}{12}\right)^{12} - 1 \\ &= 0.024265767 \\ &\approx 0.0243 \end{split}$ An effective interest rate of 2.43 % p.a.	correctly calculates the effective interest rate for interest paid monthly [1 mark]
Option 1 is the better investment because it offers the higher effective interest rate.	determines better option [1 mark]

Question 5 (8 marks)

Sample response	The response
a) Total Cost Matrix B C D $K 196 62 203$ $L 150 60 147$ $M 127 77 111$ Subtract the minimum from each row B C D $K 134 0 141$ $L 90 0 87$ $M 50 0 34$ Only 1 line so, Subtract the minimum from each column B C D $K 84 0 107$ $L 40 0 53$ $M 0 0 0 0$ Only 2 lines so, Add 40 to each element in each line B C D $K 84 40 107$ $L 40 0 53$ $M 0 0 0 0$	correctly uses the row and column reduction method [1 mark]
Subtract 40 from every element $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	uses the Hungarian algorithm [1 mark] determines the bipartite graph [1 mark]
<i>M</i> ∕ → <i>D</i>	

Sample response	The response
Therefore: Kate makes the chair (KC) Luca makes the bookcase (LB) Marcel makes the desk (MD)	identifies who builds each piece of furniture [1 mark] shows logical organisation communicating key steps [1 mark]
b) Checking all combinations KB + LC + MD = 196 + 60 + 111 = 367 KB + LD + MC	correctly identifies the six possible options [1 mark]
= 196 + 147 + 77 = 420 KC + LB + MD = 62 + 150 + 111 = 323	
KC + LD + MB = 62 + 147 + 127 = 336	
KD + LB + MC = 203 + 150 + 77 = 430	
KD + LC + MB = 203 + 60 + 127 = 390	calculates cost of the six options [1 mark]
Kate making the chair, Luca the bookcase and Marcel the desk is the cheapest option at \$323.	evaluates reasonableness of solution [1 mark]

Question 6 (3 marks)


Sample response	The response
At midnight, the date goes forward by a day but changing sides of the date line would also forward the date by another day.	correctly explains the effect of the date line change [1 mark]
The result was in 2011, after midnight, Samoa went forward 2 days, skipping December 30th altogether.	
The time and date became 12:01am, December 31st, 2011.	correctly determines the time [1 mark] correctly determines the date including the year [1 mark]

Question 7 (7 marks)

Sample response	The response
Let $n =$ the number of years since 2010	
For Chris: $t_1 = 67\ 500\ \text{and}\ t_8 = 84\ 300$	
Find d $t_n = t_1 + (n - 1)d$ $84\ 300 = 67\ 500 + 7d$ $\therefore \ 16\ 800 = 7d$ $\therefore \ 2\ 400 = d$	correctly determines the parameter <i>d</i> [1 mark]
Rule for Chris $t_n = t_1 + (n - 1)d$ $t_n = 67500 + 2400(n - 1)$ $t_n = 2400n + 65100$	correctly determines the model for Chris [1 mark]

Sample response	The response
For Sam: $t_5 = 79500$ and $t_9 = 87900$	
Find <i>d</i> $t_n = t_1 + (n - 1)d$ $87900 = t_1 + 8d \dots$ equation 1 $79500 = t_1 + 4d \dots$ equation 2	
Use elimination method equation 1 – equation 2 $\therefore 8400 = 4d$ $\therefore 2100 = d$	
Find t_1 Sub <i>d</i> into equation 1 $\therefore 87900 = t_1 + 8(2100)$ $\therefore 87900 = t_1 + 16800$	correctly determines the parameters d and t_1
:. $t_1 = 71100$	[1 mark]
Rule for Sam $t_n = t_1 + (n-1)d$	
$t_n = 71100 + 2100(n - 1)$ $t_n = 2100n + 69000$	correctly determines the model for Sam [1 mark]
When will they earn the same? 2400n + 65100 = 2100n + 69000 300n = 3900	
n = 13	determines when they earn the same [1 mark]
Therefore, they will earn the same in 2023, so Chris will earn more in 2024.	determines year [1 mark]
	shows logical organisation communicating key steps [1 mark]

Question 8 (3 marks)

Question 9 (4 marks)

mple response					Mark	
Seasonally adjust 2017 data						
	2015	2016	2017			
Summer	96.77	101.61	102.42		correctly seasonally adjusts the 2017 data [1 mark]	
Autumn	98.04	101.96	103.92			
Winter	100.00	101.39	104.17			
Spring	100.97	102.91	103.88			
Mean rainfall b	y season in	<u>2025</u> <u>M</u> ı (round whole r		I		
			10.J			
v(41) = 122.1	762	151				
		151 125				
y(42) = 122.7 y(43) = 123.3	754 746	-				
y(41) = 122.1 y(42) = 122.7 y(43) = 123.3 y(44) = 123.9	754 746	125			calculates 2025 rainfall for each season [1 mark]	