General Mathematics marking guide

Sample external assessment 2020

Paper 1: Simple familiar (60 marks)

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 3 and 4
2. comprehend mathematical concepts and techniques drawn from Units 3 and 4
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 3 and 4.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock external assessments for each General senior syllabus subject to support the introduction of external assessment in Queensland.
An external assessment marking guide (EAMG) has been created specifically for each mock external assessment.

The mock external assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the external assessment conditions and specifications in General senior syllabuses
- developed under secure conditions.

Purpose

This document consists of an EAMG and an annotated response.
The EAMG:

- provides a tool for calibrating external assessment markers to ensure reliability of results
- indicates the correlation, for each question, between mark allocation and qualities at each level of the mark range
- informs schools and students about how marks are matched to qualities in student responses.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' N ' will be recorded.

External assessment marking guide

Multiple-choice

Question	Response
1	B
2	C
3	D
4	B
5	B
6	A
7	D
8	A
9	D
10	D
11	C
12	B
13	C
14	B
15	B
16	A
17	C
18	C
19	B
20	A

Short response

Question 21 (4 marks)

Sample response
The response

$$
\left.\begin{array}{rl}
A & =270000 \\
M & =? \\
i & =\frac{0.035}{12} \\
& =0.002916 \ldots \\
n & =20 \times 12 \\
& =240 \\
A & =M\left(\frac{1-(1+i)^{-n}}{i}\right) \\
A & =M\left(\frac{1-(1+0.002916 \ldots)^{-240}}{0.002916}\right) \\
270 & \\
M & =\frac{27000}{172.425 \ldots} \\
M & =1565.891
\end{array} \quad \text { surrectly determines } i \text { and } n \text { [1 mark] }\right] \text { substitutes into appropriate annuity rule [1 mark] }
$$

Sample response
a) $t_{1}=5$
$t_{2}=5+4$
$=9$
$t_{3}=9+4$
$=13$
$t_{4}=13+4$
$=17$
$t_{5}=17+4$
$=21$
$t_{6}=21+4$
$=25$

b) $t_{n}=t_{1}+(n-1) d$
$t_{n}=5+4(n-1)$
$=5+4 n-4$
$=4 n+1$
c) $t_{27}=4 \times 27+1$
$=109$

The response
provides evidence of the six terms [1 mark]
correctly scales and labels the axes [1 mark]
correctly plots the six points [1 mark]
correctly substitutes into the given equation [1 mark]
correctly simplifies the equation [1 mark]
substitutes into equation [1 mark]
determines value of t_{27} [1 mark]

Sample response
a) 46
b) The outlier significantly decreases the R^{2} value as without this outlier the R^{2} would be 1 .
c) $y=90 x-23.333$
at $x=18$
$y=90(18)-23.333$
$=1596.667$

The line of best fit predicts that approximately 1597 meals will be sold in the $18^{\text {th }}$ month.
d) Extrapolating the given data can be a problem. In this case the number of meals can't keep increasing forever as the restaurant will have a maximum capacity.

The response
correctly provides a value in the range from 44 to 48 inclusive [1 mark]
correctly explains the effect of the outlier [1 mark]
correctly substitutes into the given equation [1 mark]
correctly states the number of meals sold, rounded to a whole number [1 mark]
communicates the relevant issue [1 mark]
evaluates the reasonableness of the solution [1 mark]

Sample response
 The response

a) Total number enjoying swimming
$=33+132$
$=165$
b) Total number surveyed
$=33+132+110+58$
$=333$
correctly determines the total [1 mark]
c) Percentage who enjoy both
$=\frac{33}{333} \times 100 \%$
$=9.91 \%$
correctly determines the total [1 mark]
determines fraction [1 mark]
determines percentage to two decimal places [1 mark]
Question 25 (3 marks)
Sample response The response
a) Pond and cafe
b) Garden shed 8:55:00

Pond 1:10
Playground 2:30
Butterflyhouse $\quad 2: 20$
. $01 \cdot 00$

Arrive at 9:01am
correctly identifies the two places [1 mark]
correctly identifies the fastest path [1 mark]
determines clock time [1 mark]

Sample response	The response
a) Number of computers	correctly identifies the response variable [1 mark]
b) Using calculator	
$y=0.7995 x+27.1306$	
$\therefore c=0.80 s+27.13$	correctly determines the equation $[\mathbf{1}$ mark $]$

Question 27 (3 marks)

Sample response	The response
a) 35%	correctly calculates the percentage [1 mark]
b)t_{1} $=120$ t_{2} $=0.65 \times 120$ $=78$ t_{3} $=0.65 \times 78$ $=50.7$ t_{4} $=0.65 \times 50.7$ $=32.955$	
	provides evidence of a valid method $\mathbf{[1} \mathbf{~ m a r k}]$

Question 28 (3 marks)

Sample response	The response
Travelling North from $38^{\circ} 09^{\prime} \mathrm{S}$ to $43^{\circ} 01^{\prime} N$	
$\begin{aligned} \text { angular distance } & =38^{\circ} 09^{\prime}+43^{\circ} 01^{\prime} \\ & =81^{\circ} 10^{\prime} \end{aligned}$	correctly calculates the angular distance [1 mark]
$\begin{aligned} D & =111.2 \times \text { angular distance } \\ & =111.2 \times 81 \frac{10}{60} \\ & =9025.73 \end{aligned}$	provides evidence of using the correct rule [1 mark]
The distance is 9026 km .	calculates distance to the nearest km [1 mark]
Question 29 (4 marks)	
Sample response	The response
Travelling East \leftrightarrow West	
$\begin{aligned} \text { angular distance } & =127^{\circ}+122.4^{\circ} \\ & =249.4^{\circ} \end{aligned}$	correctly calculates the angular distance [1 mark]
$\begin{aligned} \text { shortest angular distance } & =360^{\circ}-249.4^{\circ} \\ & =110.6^{\circ} \end{aligned}$	determines the shortest angular distance [1 mark]
$\begin{aligned} D & =111.2 \cos \theta \times \text { angular distance } \\ & =111.2 \times \cos (37.6) \times 110.6 \\ & =9744.15 \end{aligned}$	provides evidence of using the correct rule [1 mark]
The shortest distance is 9744 km .	determines distance to the nearest km [1 mark]

Question 30 (4 marks)

Sample response
a) $\mathrm{A}-\mathrm{H}$
b) Critical Path $=14$ (end of day 14) Latest starting time for Activity G $=14-2$
$=12$
Latest starting time is the end of day 12
c) Float Time $=10-5$
$=5$
Float time of 5 days

The response
correctly identifies the critical path [1 mark]
correctly determines the latest starting time [1 mark]
provides evidence of the method used to calculate the float time [1 mark]
calculates float time [1 mark]

