General Mathematics 2019 v1.2

Units 1 and 2 sample marking scheme

April 2019

Examination

This sample has been compiled by the QCAA to model one possible approach to allocating marks in an examination. It matches the examination mark allocations as specified in the syllabus ($\sim 60 \%$ simple familiar, $\sim 20 \%$ complex familiar and $\sim 20 \%$ complex unfamiliar) and ensures that all assessment objectives are assessed.

Assessment objectives

This assessment instrument is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from Units 1 and 2
2. comprehend mathematical concepts and techniques drawn from Units 1 and 2
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from Units 1 and 2.

Queensland Curriculum \& Assessment Authority

Task

See the sample assessment instrument for Units 1 and 2: Examination (available on the QCAA Portal).

Sample marking scheme

The annotations are written descriptions of the expected response for each question and are related to the assessment objectives.

Note: $V=\frac{1}{2}$ mark \quad Marking scheme

Paper 1 (simple familiar)

Question 1 (5 marks)

Wage $=220 \times 2 \checkmark+6.5 \% \checkmark \times(2500 \checkmark+4275 \checkmark)$
$=\$ 440 \checkmark+\$ 440.375 \checkmark$ (does not round before final answer) \checkmark
$=\$ \checkmark 880.38 \checkmark \quad$ (correct rounding) \checkmark

Question 2 (3 marks)

Using similar triangles \checkmark
$\frac{0.5}{1}=\frac{h}{4} \checkmark$
$\therefore h=4 \times 0.5 \checkmark$
$=2 \mathrm{~m}$
The height of the tree is 2 metres.

1. use definitions
2. identify relevant techniques
3. select rules and put them into effect
4. comprehend mathematical concepts and techniques
5. communicate using mathematical conventions
6. recognise particular features and consider relevance; perform calculations using technology
7. symbolise critical elements
8. organise and present information in symbolic form; use mathematical symbols and conventions

Question 3 (3 marks)

$\cos \theta=\frac{a}{h} \checkmark$
$\cos 28^{\circ}=\frac{104}{h} \checkmark$

$$
h=\frac{104}{\cos 28^{\circ}} \checkmark \checkmark
$$

Hypotenuse $=117.79 \mathrm{~cm}$

Question 4 (2,3 marks)

a) Using the cosine rule: (select appropriate rule) \checkmark

$$
\begin{aligned}
(\mathrm{AC})^{2} & =22^{2}+26^{2}-2 \times 22 \times 26 \cos 130^{\circ} \checkmark \\
& =1895.349025
\end{aligned}
$$

$A C=\sqrt{1895.349025}=43.5356064 \mathrm{~cm} \checkmark \quad$ (don't round until the final answer) The length of $A C$ is $43.54 \mathrm{~cm} \checkmark$
b) Area $=\frac{1}{2} a c \sin B \quad$ (select appropriate rule)

$$
=\frac{1}{2} \times 26 \times 22 \times \sin 130^{\circ}
$$

$$
\begin{aligned}
\text { Area } & =219.0887107 \checkmark \\
& =219.09 \checkmark \mathrm{~cm}^{2} \checkmark
\end{aligned}
$$

Question 5 (4 marks)

articulate
relevant concepts and techniques
4. interpret mathematical results in the context of the situation
$Q_{1}-1.5 \times I Q R \leq x \leq Q_{3}+1.5 \times I Q R$
$107.5-1.5 \times 102.5 \leq x \leq 210+1.5 \times 102.5 \checkmark$
$-46.25 \leq x \leq 363.75 \checkmark \checkmark$
As all values lie between -46.25 and 363.75 inclusive, there are no outliers.

1. select, recall and use definitions and procedures
2. use mathematical terminology, symbols and conventions
3. justify procedures and decisions by explaining mathematical reasoning
4. recall facts
5. comprehend mathematical concepts
6. recognise
features of recalled information
7. make
connections between topics

Paper 2 (simple familiar, complex familiar and complex unfamiliar)

Question 1 (4 marks) SF

a. $3 A+C$

$$
\begin{aligned}
& =3\left[\begin{array}{ll}
1 & -2 \\
4 & -1
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 & -6 \\
12 & -3
\end{array}\right]+\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \checkmark \checkmark \\
& =\left[\begin{array}{cc}
5 & -3 \\
16 & 2
\end{array}\right] \checkmark
\end{aligned}
$$

b. $A B$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & -2 \\
4 & -1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 2 \\
-1 & 4 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
(1 \times 3)+(-2 \times-1) & (1 \times 0)+(-2 \times 4) & (1 \times 2)+(-2 \times 0) \\
(4 \times 3)+(-1 \times-1) & (4 \times 0)+(-1 \times 4) & (4 \times 2)+(-1 \times 0)
\end{array}\right] \\
& \checkmark \checkmark \checkmark \checkmark \\
& =\left[\begin{array}{ccc}
5 & -8 & 2 \\
13 & -4 & 8
\end{array}\right]
\end{aligned}
$$

Question 2 (4 marks) SF

a. continuous $\checkmark \checkmark$
b. categorical $\checkmark \checkmark$
c. numerical $\checkmark \checkmark$ discrete $\checkmark \checkmark$

Question 3 (5 marks) CF

$3\left[\begin{array}{cc}y & 4 \\ 6 & x-1\end{array}\right]+\left[\begin{array}{cc}3 & -7 \\ -14 & y\end{array}\right]=\left[\begin{array}{cc}6 x & 5 \\ 4 & 6\end{array}\right]$
$\left[\begin{array}{cc}3 y & 12 \\ 18 & 3 x-3\end{array}\right]+\left[\begin{array}{rr}3 & -7 \\ -14 & y\end{array}\right]=\left[\begin{array}{cc}6 x & 5 \\ 4 & 6\end{array}\right] \checkmark$
$\left[\begin{array}{cc}3 y+3 & 5 \\ 4 & 3 x-3+y\end{array}\right]=\left[\begin{array}{cc}6 x & 5 \\ 4 & 6\end{array}\right] \checkmark$
. present
information in symbolic form
4. check
calculations using relevant facts and procedures
6. translate information into a mathematically workable format

Question 4 (6 marks) CF

Area $1=\frac{45 \times 60}{2}=1350 \mathrm{~m}^{2} \checkmark \checkmark$

Length C

$C=\sqrt{45^{2}+60^{2}}$
$=75 \mathrm{~m} \checkmark \checkmark$

Area 2

$A=\sqrt{s(s-a)(s-b)(s-c)}$
where $\quad s=\frac{75 \times 3}{2}=112.5 \checkmark$

$$
\begin{aligned}
A & =\sqrt{112.5(112.5-75)(112.5-75)(112.5-75)} \checkmark \checkmark \\
& =\sqrt{112.5(112.5-75)^{3}} \\
& =2435.70 \mathrm{~m}^{2} \checkmark \checkmark
\end{aligned}
$$

The area of the block is $1350 m^{2}+2435.7 m^{2}=\mathbf{3 7 8 5 . 7 0} \mathbf{m}^{2} \checkmark$
4. evaluate the reasonableness of solutions; interpret results in the context of the solution
5. construct mathematical arguments and provide reasons for choices made and conclusions reached
6. analyse the context of the problem and make decisions about
techniques and technology used to develop a solution
2. comprehend mathematical techniques
5. justify
procedures and decisions by explaining mathematical reasoning; describe mathematical thinking
6. analyse the context of the problem

Question 5 (6 marks) CU

(Logically we know that the cube has a greater surface area but the student must justify their response by showing calculations.)

No marks awarded for an answer only.
$\boldsymbol{V}_{\text {cube }}=s^{3}$
$10=s^{3} \checkmark$
$\therefore s=\sqrt[3]{10} \checkmark$
$s \approx 2.15 m(2 d . p$.
$\boldsymbol{S A}$ cube $=2.15443469 \times 2.15443469 \times 6 \checkmark$
$=27.849533 \mathrm{~m}^{2} \approx 27.85 \mathrm{~m}^{2}$
$\boldsymbol{V}_{\text {sphere }}=\frac{4 \pi r^{3}}{3}$
$10=\frac{4 \pi r^{3}}{3} \checkmark$
$\therefore r^{3}=\frac{10 \times 3}{4 \pi}=2.387324146$
$\therefore r=\sqrt[3]{2.387324146}=1.34 m(2$ d.p.) \checkmark
$\boldsymbol{S} \boldsymbol{A}_{\text {sphere }}=4 \pi r^{2}$
$=4 \times \pi \times 1.336504618^{2}$
$=22.44661156 \mathrm{~cm}^{2} \approx 22.45 \mathrm{~m}^{2}$
To paint both solids one would consider the surface areas. The surface area of the cube is $27.85 \mathrm{~m}^{2}$ and the surface area of the sphere is $22.45 \mathrm{~m}^{2}$, a difference of approximately $5.40 \mathrm{~m}^{2}$.

Therefore, the sphere would be cheaper to paint, since $22.45 \mathrm{~m}^{2}<27.85 \mathrm{~m}^{2} \checkmark$

Question 6 (5 marks) CF

The photographer is buying Australian currency as they need to convert all prices to Australian dollars:

London: GBP $£ 345.85 \div 0.6835=$ AUD $\$ 506.00 \checkmark \checkmark$
New York: USD $\$ 588 \div 1.1002=$ AUD $\$ 534.45 \checkmark \checkmark$
Australia: AUD $\$ 620 \checkmark$
It is observed that postage to or within Australia is included in all prices. \checkmark Assume there are no other factors such as a warranty or exchange of goods. Therefore, the photographer should purchase the camera from Great Britain.

1. select and use procedures
2. communicate using everyday language to present information in symbolic form
3. justify procedures using mathematical reasoning that is rigorous and requires clarity and precision
4. solve problems by applying mathematical concepts and techniques
5. identify and articulate critical elements of relevant techniques
6. reflect on whether the

Question 7 (5 marks) CU

Side view

H
$\checkmark \checkmark$ diagram
We need to calculate the angle between the web $\overline{A H}$ and $\overline{A D}$. First, find the length of $\overline{A D}$ using Pythagoras' theorem.

$$
\begin{aligned}
\overline{A D} & =\sqrt{40^{2}+40^{2}} \\
& =56.56854249 \mathrm{~cm}
\end{aligned}
$$

Then, calculate the height $\overline{D H}$.
$\overline{D H}=\sqrt{58^{2}-56.56854249^{2}} \quad=12.80624847 \mathrm{~cm} \checkmark \checkmark$

Top view

C

Use three known sides to calculate the angle:
$c^{2}=a^{2}+b^{2}-2 a b \cos C \checkmark$
$12.80624847^{2}=58^{2}+56.56854249^{2}-2 \times 58 \times 56.56854249 \cos C$
$-12.80624847^{2}+58^{2}+56.56854249^{2}=2 \times 58 \times 56.56854249 \cos C$
$\frac{-12.81^{2}+58^{2}+56.57^{2}}{2 \times 58 \times 56.57}=\cos C \quad$ (only round at the end)
$\cos C=0.975319698$
$C=\cos ^{-1} 0.9753=12.7558717^{\circ}=12^{\circ} 45^{\prime}$
The angle of depression the web makes with the top of the box is $12^{\circ} 45^{\prime}$.
Therefore, the web will hold.

Question 8 (5 marks) CU

Company 1: red line, Company 2: blue line and Company 3: green line.

Company 2 is cheaper than Company 1 at first. Once the lines meet,
Company 1 becomes cheaper. Company 2 is more expensive than
Company 3 until the lines meet and then it becomes the cheaper option.

problem has been solved	To calculate the exact time that the lines meet I will solve using substitution into simultaneous equations.
5. construct mathematical arguments and	Company 1: $C=1.2 k+5 \checkmark$
providing reasons for	Company 2: $C=2 k+3 \checkmark$
and conclusions reached	Company 3: $C=5 k \checkmark$
6. solve problems by applying mathematical concepts and techniques, make decisions about the technology used to develop a solution	Companies 1 and 2 are the same cost when $C=1.2 k+5$ and $C=2 k+3$ meet.
	So, when $1.2 k+5=2 k+3 \checkmark$
	$2 k-1.2 k=5-3$
	$0.8 k=2$
	$k=\frac{2}{0.8}=2.5 \mathrm{~km}$
	$\frac{\pi}{8}$
	The time that Company 2 is the cheapest option is indicated by the thick blue line on the graph:
	The lines representing companies 2 and 3 meet when $C=2 k+3$ and $C=5 k$ meet.
	So when $2 k+3=5 k \checkmark$
	$5 k-2 k=3$
	$3 k=3$
	$k=1 \mathrm{~km} \checkmark$
	Therefore, Company 2 is the cheapest option for pets being walked between 1 km and 2.5 km .

