Given name/s		
Family name		
Teacher	Class	
School name		

Common internal assessment 2023 — Phase 4

Question and response book

Essential Mathematics

Time allowed

- Perusal time 5 minutes
- Working time 60 minutes

General instructions

- Answer all questions in this question and response book.
- Write using black or blue pen.
- QCAA-approved calculator permitted.
- · Ruler required.
- QCAA formula book provided.
- Planning paper will not be marked.

Part A: Simple (40 marks)

• 9 short response questions

Part B: Complex (10 marks)

• 2 short response questions

DO NOT WRITE ON THIS PAGE THIS PAGE WILL NOT BE MARKED

Instructions

- Questions worth more than one mark require mathematical reasoning and/or working to be shown to support answers.
- If you need more space for a response, use the additional pages at the back of this book.
 - On the additional pages, write the question number you are responding to.
 - Cancel any incorrect response by ruling a single diagonal line through your work.
 - Write the page number of your alternative/additional response, i.e. See page ...
 - If you do not do this, your original response will be marked.

Part A: Simple

• This part has nine questions and is worth 40 marks.

DO NOT WRITE ON THIS PAGE

THIS PAGE WILL NOT BE MARKED

QUESTION 1 (3 marks)

The top view of a theatre is drawn on a grid as shown.

Scale 1 unit: 100 cm

a)	Estimate the actual length of side F in centimetres.	[2 marks]
----	--	-----------

The area of the theatre is approximately 620 000 cm².

b) Convert the area into the most appropriate unit of measure. [1 mark]

QUESTION 2 (5 marks)

A baker is creating a cake in the shape shown.

a) Identify the name of the three-dimensional shape.

[1 mark]

b) How many vertices does the cake have?

[1 mark]

An edible photograph will be placed on the front face of the cake.

c) Identify the shape of the front face.

[1 mark]

d) Calculate the area of the front face in square centimetres.

[2 marks]

QUESTION 3 (4 marks)

A worker blocked off a rectangular section of road with a barrier to inspect the condition of a sinkhole, as shown in the top view.

Not to scale

a)	Calculate the perimeter of the blocked off section in metres.	[2 marks]
b)	Use leading-digit approximation to estimate the area of the sinkhole in square metres.	[2 marks]

QUESTION 4 (5 marks)

The wheel diameters of 10 different cars are recorded as shown.

a) Calculate the mean wheel diameter.

[2 marks]

b) Determine the median wheel diameter.

[2 marks]

c) Describe the spread of the dataset.

[1 mark]

QUESTION 5 (5 marks)

The building plan for a bathroom renovation is shown.

a)	How many	drains	are t	here?
----	----------	--------	-------	-------

[1 mark]

b) The plan will be labelled wi	h a scale 10 mm: 50 cm. Interpret what this scale means.	[1 mark]
---------------------------------	--	----------

The dimensions of the shower on the plan are 35 mm \times 30 mm.

c)	Calculate the actual area of the shower in square metres.	
•)	cure united the decider area of the she wer in square meres.	

[2 marks]

A contractor asks the construction company to mail them the building plan, which was weighed at $0.014~\mathrm{g}$. When weighed on a post office scale, the mass is displayed in milligrams.

d) Write the mass in the empty cell of the scale.

[1 mark]

QUESTION 6 (4 marks)

A truck carries a chemical in cylindrical barrels, as shown.

a)	Estimate the maximum number of barrels that would fit inside the truck.	[2 marks]

b)	If each barrel has a capacity of 600 L, estimate the maximum capacity of the truck in litres.	[1 mark]

After a delivery, the truck has 40% of the barrels left.

c)	Use the result from Question 6b) to determine the amount of chemical left on the truck	
	in litres.	[1 mark]

QUESTION 7 (6 marks)

A plastic paperweight is in the shape of a square-based pyramid, as shown.

a)	Use Pythagoras' theorem to calculate the height, h , of the paperweight in centimetres.	[2 marks]
_		
b)	Use the result from Question 7a) to calculate the volume of the paperweight in cubic centimetres.	[2 marks]
c)	To make the plastic paperweight, a liquid is poured into a mould. Use the result from Question 7b) to determine the capacity of the paperweight mould in litres.	[1 mark]
d)	Use the result from Question 7c) to determine the number of plastic paperweights that can be made from 10 L of liquid.	[1 mark]

a) Convert the volume to cubic centimetres.

QUESTION 8 (3 marks)

[1 mark]

b) Use the result from Question 8a) and leading-digit approximation to estimate the number of times the largest container can be filled using a smaller container, which has a volume of 1150 cm³.

Volume 0.004125 m³

[1 mark]

c) Use the result from Question 8b) and leading-digit approximation to estimate the mass of the largest container in kilograms, given the smaller container weighs 7.8 kg.

[1 mark]

QUESTION 9 (5 marks)

Scientists collected data on lizard lengths, in centimetres, as shown.

12	13	14	15	16	17	19	21	22	24	27	27	29	30	32	33	53

a) Determine the modal lizard length.

[1 mark]

b) Complete the five-number summary for the lizard lengths by writing an appropriate value in each empty cell of the table.

[2 marks]

Minimum	Minimum Lower quartile (Q ₁)		Upper quartile (Q ₃)	Maximum
	15.5		29.5	

c) Construct a box plot to represent the data.

[2 marks]

Draw your box plot here.

Note: If you make a mistake in the box plot, cancel it by ruling a single diagonal line through your work and use the additional response space at the back of this question and response book.

Part B: Complex

• This part has two questions and is worth 10 marks.

QUESTION 10 (5 marks)

A model of an observatory is made of two three-dimensional shapes (a cylinder and a hemisphere), as shown.

a)	Calculate the total outer surface area of metal needed to construct the model of an	
	observatory in square centimetres.	[4

[4 marks]

	l available is 5000 cm ² . from Question 10a) to evaluate whether there is enough metal to make	
the model of	an observatory.	[1 mark

QUESTION 11 (5 marks)

Sharnee is comparing two kinds of potting mix for a sunflower garden. The best potting mix will produce the tallest flowers.

The growth heights of sunflowers using potting mix A are represented in a box plot.

The growth heights (cm) of sunflowers using potting mix B are shown.

108 105 98 105	99 98 97	98 104 96	100
----------------	----------	-----------	-----

Sharnee believes that potting mix A is best for growing the tallest sunflowers. Evaluate the reasonableness

of this belief. Justify your decision using mathematical reasoning.

ADDITIONAL PAGE FOR STUDENT RESPONSES

If you want this box plot to be marked, rule a single diagonal line through your original response.

Instrument-specific standards — Common internal assessment

U	> 10	 some selection, recall and use of facts, rules, definitions and procedures; basic comprehension and communication of mathematical concepts and techniques; some discussion of the reasonableness of solutions; and inconsistent application of mathematical concepts and techniques
ဂ	> 20	 selection, recall and use of simple facts, rules, definitions and procedures; comprehension and communication of simple mathematical concepts and techniques; discussion of the reasonableness of solutions using mathematical reasoning; and application of simple mathematical concepts and techniques to solve problems
Œ	> 30	 selection, recall and use of simple and some complex facts, rules, definitions and procedures; comprehension and communication of simple and some complex mathematical concepts and techniques; evaluation of the reasonableness of some solutions using mathematical reasoning; and application of simple and some complex mathematical concepts and techniques to solve problems
Α	> 40	 comprehensive selection, recall and use of simple and complex facts, rules, definitions and procedures; comprehension and clear communication of simple and complex mathematical concepts and techniques; evaluation of the reasonableness of solutions and use of mathematical reasoning to justify procedures and decisions; and proficient application of simple and complex mathematical concepts and techniques to solve problems
		The student work has the following characteristics
Grades	Cut-off (marks)	Foundational knowledge and problem solving

© State of Queensland (QCAA) 2023

full terms and conditions, which specify certain exceptions to the licence. | Attribution: © State of Queensland (QCAA) 2023 Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the