Essential Mathematics marking guide

Sample common internal assessment 2020

Short response (50 marks)

Assessment objectives

This assessment technique is used to determine student achievement in the following objectives:

- 1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 Topics
- 2. comprehend mathematical concepts and techniques drawn from all Unit 3 Topics
- 3. communicate using mathematical, statistical and everyday language and conventions
- 4. evaluate the reasonableness of solutions
- 5. justify procedures and decisions by explaining mathematical reasoning
- 6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 Topics.

Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock common internal assessments for both Applied (Essential) senior syllabuses to support the introduction of common internal assessment in Queensland.

A common internal assessment marking guide (CIAMG) has been created specifically for each mock common internal assessment.

The mock common internal assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the common internal assessment conditions and specifications in both Applied (Essential) senior syllabuses
- developed under secure conditions.

Purpose

This document informs schools and students how marks are matched to characteristics in responses to the mock common internal assessment.

The CIAMG provides:

- explicit statements about what is expected of students when they respond to a question
- sample responses that identify characteristics to assist the marker to make judgments
- a tool for calibrating markers to ensure comparability of results.

Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of '0' will be recorded.

Where no response to a question has been made, a mark of 'N' will be recorded.

Question	Sample response	The response
1	a) Triangular-based prism	correctly identifies the name of the shape [1 mark]
	b) 9 edges	correctly states the number of edges [1 mark]
2	a) Perimeter = $2 \times (3.2 + 1.9)$	correctly substitutes into an appropriate rule [1 mark]
	Perimeter = 10.2 m	calculates perimeter [1 mark]
	b) Length = 10.2×100 = 1020 cm	converts metres to centimetres [1 mark]
	Remainder = 1100 - 1020 = 80 cm	determines amount of timber left over [1 mark]
3	a) 4.5 m ²	estimates a valid numerical value in the range of 4 – 5 m ² [1 mark]
	b) Area of triangle = $\frac{1}{2}bh$ = $\frac{1}{2} \times 8 \times 7$	correctly substitutes into an appropriate rule [1 mark]
	$= 28 \text{ m}^2$	determines area of enclosure [1 mark]

Question	Sample response	The response
4	a) Scales show 750 g	correctly estimates a valid numerical value in the range of 740 – 760 g [1 mark]
	 b) Using leading-digit approximation, the mass of these three capsicums is: 800 g 	uses leading-digit approximation method to obtain an estimate for three capsicums [1 mark]
	∴ nine capsicums = 800 × 3 = 2400 g	estimates mass of nine capsicums [1 mark]
	c) $2400 \text{ g} = 2.4 \text{ kg}$	converts grams to kilograms [1 mark]
	$Cost = 6.40×2.4	uses an appropriate rule to connect unit price and mass in kilograms [1 mark]
	Cost = \$15.36	calculates cost of the nine capsicums [1 mark]
5	Find horizontal lengths Scale 1 : 1600 18 mm : 28800 mm ∴ horizontal lengths are 28.8 m	correctly determines the measurements of block [1 mark]
	Find slant lengths 17 mm : 27200 mm ∴ slant lengths are 27.2 m	applies scale to convert to metres [1 mark]
	Perimeter = $2 \times (28.8 + 27.2)$ = 112 m	calculates perimeter [1 mark]
	∴ Perimeter \approx 110 m (rounded)	rounds perimeter to the nearest 10 metres [1 mark]

Question	Sample respo	onse	The response
7	a) The m	ode is 1	correctly identifies the mode [1 mark]
	b) 0, 1, 1,	1, 1, 1, 2, 2, 2, 2, 3, 4, 8	correctly lists the results [1 mark]
	c) Mean	$= \frac{0+1\times5+2\times4+3+4+8}{13} = \frac{28}{13}$	substitutes into an appropriate rule [1 mark]
	Mean	≈ 2.1538	calculates mean [1 mark]
	d) Media	n = 2	identifies median [1 mark]
	e) It is tig	ghtly packed with a gap at 5 pets.	describes at least one valid aspect of the spread of data [1 mark]

Question	Sample response	The response
8	\$0, \$5, \$10, \$10, \$10, \$15, \$20, \$20, \$50	correctly lists the values in order [1 mark]
	Median = 10	correctly determines the median [1 mark]
	1^{st} quartile = 7.5	correctly determines the 1 st quartile [1 mark]
	3^{rd} quartile = 20	correctly determines the 3 rd quartile [1 mark]
	Drawing the box plot:	accurately constructs box plot using an appropriate scale [1 mark]
9	a) Volume $=\frac{1}{3}Ah$	
	$A = l \times w$ $A = 45 \times 20$ $A = 900 \text{ cm}^2 h = 35$	correctly determines the base area [1 mark]
	$V = \frac{1}{3} \times 900 \times 35$ $V = 10500 \text{ cm}^3$	substitutes into an appropriate rule [1 mark]
	The volume of the right pyramid is 10500 cm^3	calculates volume of pyramid [1 mark]
	b) $10500 \text{ cm}^3 = 0.0105 \text{ m}^3$ Since 1 m ³ = 1000 L $0.0105 \text{ m}^3 = 10.5 \text{ L}$	converts from cm ³ to L [1 mark]
	The right pyramid has a capacity of ${f 11}$ L	determines capacity rounded to the nearest litre [1 mark]

Question	Sample response	The response
10	a) At the age of 10, Alex is 129 cm tall.	identifies a value in the range of 128 – 130 cm [1 mark]
	b) When Alex is 134 cm tall, she will be approximately 11 years old.	determines corresponding age [1 mark]
	c) Given she remains at the 10 th percentile, at the height of 150 cm, Alex should be approximately 13.5 years old.	correctly identifies the corresponding age [1 mark]
	She will be even taller on her 15 th birthday, <i>therefore</i> her parents' assumption that the current bike will be suitable until her 15 th birthday would not be reasonable.	evaluates assumption [1 mark] justifies a conclusion by linking reasoning [1 mark]

Question	Sample response	The response
11	Using Pythagoras' theorem	
	$a^{2} = c^{2} - b^{2}$ $a^{2} = 160^{2} - 128^{2}$ $a = \sqrt{160^{2} - 128^{2}} = 96 \text{ mm}$ Using the formula for the total surface area	correctly determines the diameter [1 mark]
	of a cylinder $S = 2\pi r^2 + 2\pi rh$ $S = 2\pi (48)^2 + 2\pi (48)(128)$ $S \approx 53080.35 \text{ mm}^2$ $S \approx 531 \text{ cm}^2$	substitutes radius into an appropriate rule [1 mark]
	$S \approx 0.0531 \text{ m}^2$	determines surface area [1 mark]
	Total cost \approx \$50 × 0.0531 Total cost \approx \$ 2.66	determines total cost [1 mark]
	A price of \$3 for each package is a reasonable offer because $2.66 \approx 3$.	makes a justified conclusion about reasonableness of offer by linking reasoning [1 mark]