# Essential Mathematics marking guide 

## Sample common internal assessment 2020

## Short response (50 marks)

## Assessment objectives

This assessment technique is used to determine student achievement in the following objectives:

1. select, recall and use facts, rules, definitions and procedures drawn from all Unit 3 Topics
2. comprehend mathematical concepts and techniques drawn from all Unit 3 Topics
3. communicate using mathematical, statistical and everyday language and conventions
4. evaluate the reasonableness of solutions
5. justify procedures and decisions by explaining mathematical reasoning
6. solve problems by applying mathematical concepts and techniques drawn from all Unit 3 Topics.

## Introduction

The Queensland Curriculum and Assessment Authority (QCAA) has developed mock common internal assessments for both Applied (Essential) senior syllabuses to support the introduction of common internal assessment in Queensland.

A common internal assessment marking guide (CIAMG) has been created specifically for each mock common internal assessment.

The mock common internal assessments and their marking guides were:

- developed in close consultation with subject matter experts drawn from schools, subject associations and universities
- aligned to the common internal assessment conditions and specifications in both Applied (Essential) senior syllabuses
- developed under secure conditions


## Purpose

This document informs schools and students how marks are matched to characteristics in responses to the mock common internal assessment.

The CIAMG provides:

- explicit statements about what is expected of students when they respond to a question
- sample responses that identify characteristics to assist the marker to make judgments
- a tool for calibrating markers to ensure comparability of results.


## Mark allocation

Where a response does not meet any of the descriptors for a question or a criterion, a mark of ' 0 ' will be recorded.

Where no response to a question has been made, a mark of ' $N$ ' will be recorded.

| Question | Sample response | The response |
| :---: | :---: | :---: |
| 1 | a) Triangular-based prism <br> b) 9 edges | correctly identifies the name of the shape [1 mark] <br> correctly states the number of edges [1 mark] |
| 2 | a) Perimeter $=2 \times(3.2+1.9)$ $\text { Perimeter }=10.2 \mathrm{~m}$ <br> b) $\begin{aligned} \text { Length } & =10.2 \times 100 \\ & =1020 \mathrm{~cm} \\ \text { Remainder } & =1100-1020 \\ & =80 \mathrm{~cm} \end{aligned}$ | correctly substitutes into an appropriate rule [1 mark] <br> calculates perimeter [1 mark] <br> converts metres to centimetres [1 mark] <br> determines amount of timber left over [1 mark] |
| 3 | a) $4.5 \mathrm{~m}^{2}$ $\text { b) } \quad \begin{aligned} \text { Area of triangle } & =\frac{1}{2} b h \\ & =\frac{1}{2} \times 8 \times 7 \\ & =28 \mathrm{~m}^{2} \end{aligned}$ | estimates a valid numerical value in the range of $4-5 \mathrm{~m}^{2}$ [1 mark] <br> correctly substitutes into an appropriate rule [1 mark] <br> determines area of enclosure [1 mark] |


| Question | Sample response | The response |
| :---: | :---: | :---: |
| 4 | a) Scales show 750 g <br> b) Using leading-digit approximation, the mass of these three capsicums is: 800 g $\begin{aligned} \therefore \text { nine capsicums } & =800 \times 3 \\ & =2400 \mathrm{~g} \end{aligned}$ <br> c) $2400 \mathrm{~g}=2.4 \mathrm{~kg}$ $\text { Cost }=\$ 6.40 \times 2.4$ $\text { Cost }=\$ 15.36$ | correctly estimates a valid numerical value in the range of $740-760 \mathrm{~g}$ [1 mark] <br> uses leading-digit approximation method to obtain an estimate for three capsicums [1 mark] <br> estimates mass of nine capsicums [1 mark] <br> converts grams to kilograms [1 mark] <br> uses an appropriate rule to connect unit price and mass in kilograms [1 mark] <br> calculates cost of the nine capsicums [1 mark] |
| 5 | Find horizontal lengths <br> Scale 1: 1600 <br> 18 mm : 28800 mm <br> $\therefore$ horizontal lengths are 28.8 m <br> Find slant lengths <br> 17 mm : 27200 mm <br> $\therefore$ slant lengths are 27.2 m $\begin{aligned} \text { Perimeter } & =2 \times(28.8+27.2) \\ & =112 \mathrm{~m} \end{aligned}$ <br> $\therefore$ Perimeter $\approx 110 \mathrm{~m}$ (rounded) | correctly determines the measurements of block [1 mark] <br> applies scale to convert to metres [1 mark] <br> calculates perimeter [1 mark] <br> rounds perimeter to the nearest 10 metres [1 mark] |


| Question | Sample response | The response |
| :---: | :---: | :---: |
| 6 | a) <br> Bottom of ladder to the <br> side wall of the building <br> Not drawn to scale <br> b) $\begin{aligned} & c^{2}=a^{2}+b^{2} \\ & a=4.5, b=1.5, c=? \\ & c^{2}=(4.5)^{2}+(1.5)^{2} \\ & c^{2}=22.5 \\ & c=\sqrt{22.5} \\ & c \approx 4.743 \end{aligned}$ <br> The ladder is 4.74 m long. | draws an appropriate right-angled triangle [1 mark] <br> correctly labels 4.5 m and 1.5 m [1 mark] <br> correctly substitutes into an appropriate rule [1 mark] <br> calculates hypotenuse [1 mark] <br> states length of the ladder in metres [1 mark] |


| Question | Sample response | The response |
| :---: | :---: | :---: |
| 7 | a) The mode is 1 | correctly identifies the mode [1 mark] |
|  | b) $0,1,1,1,1,1,2,2,2,2,3,4,8$ | correctly lists the results [1 mark] |
|  | $\text { c) } \begin{aligned} \text { Mean } & =\frac{0+1 \times 5+2 \times 4+3+4+8}{13} \\ & =\frac{28}{13} \end{aligned}$ | substitutes into an appropriate rule [1 mark] |
|  | Mean $\approx 2.1538$ | calculates mean [1 mark] |
|  | d) $\quad$ Median $=2$ | identifies median [1 mark] |
|  | e) It is tightly packed with a gap at 5 pets. | describes at least one valid aspect of the spread of data [1 mark] |


| Question | Sample response | The response |
| :---: | :---: | :---: |
| 8 | $\begin{aligned} & \$ 0, \$ 5, \$ 10, \$ 10, \$ 10, \$ 15, \$ 20, \$ 20, \$ 50 \\ & \text { Median }=10 \\ & 1^{\text {st }} \text { quartile }=7.5 \\ & 3^{\text {rd }} \text { quartile }=20 \end{aligned}$ <br> Drawing the box plot: | correctly lists the values in order [1 mark] <br> correctly determines the median [1 mark] <br> correctly determines the $1^{\text {st }}$ quartile [1 mark] <br> correctly determines the $3^{\text {rd }}$ quartile [1 mark] <br> accurately constructs box plot using an appropriate scale [1 mark] |
| 9 | a) $\quad$ Volume $=\frac{1}{3} \mathrm{Ah}$ $\begin{aligned} A & =l \times w \\ A & =45 \times 20 \\ A & =900 \mathrm{~cm}^{2} \quad h=35 \\ V & =\frac{1}{3} \times 900 \times 35 \\ V & =10500 \mathrm{~cm}^{3} \end{aligned}$ <br> The volume of the right pyramid is $10500 \mathrm{~cm}^{3}$ <br> b) $\begin{aligned} & 10500 \mathrm{~cm}^{3}=0.0105 \mathrm{~m}^{3} \\ & \text { Since } 1 \mathrm{~m}^{3}=1000 \mathrm{~L} \\ & 0.0105 \mathrm{~m}^{3}=10.5 \mathrm{~L} \end{aligned}$ <br> The right pyramid has a capacity of 11 L | correctly determines the base area [1 mark] <br> substitutes into an appropriate rule [1 mark] <br> calculates volume of pyramid [1 mark] <br> converts from $\mathrm{cm}^{3}$ to L [1 mark] <br> determines capacity rounded to the nearest litre [1 mark] |




