

Geography subject report

2025 cohort

January 2026

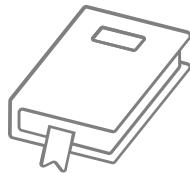
© State of Queensland (QCAA) 2026

Licence: <https://creativecommons.org/licenses/by/4.0> | **Copyright notice:** www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. |

Attribution (include the link): © State of Queensland (QCAA) 2026 www.qcaa.qld.edu.au/copyright.

Other copyright material in this publication is listed below.

1. Unless otherwise indicated, and with the exception of any personal information (e.g. images of people) or third-party material, student responses in this report are licensed under the CC BY 4.0 licence.


Queensland Curriculum & Assessment Authority
PO Box 307 Spring Hill QLD 4004 Australia

Phone: (07) 3864 0299
Email: office@qcaa.qld.edu.au
Website: www.qcaa.qld.edu.au

Contents

Introduction	1
Audience and use.....	1
Subject highlights.....	1
Subject data summary	2
Unit completion	2
Units 1 and 2 results	2
Units 3 and 4 internal assessment (IA) results	2
Total marks for IA	2
IA1 marks.....	3
IA2 marks.....	4
IA3 marks.....	5
External assessment (EA) marks	6
Final subject results	6
Final marks for IA and EA.....	6
Grade boundaries.....	7
Distribution of standards.....	7
Internal assessment	8
Endorsement	8
Confirmation	8
Internal assessment 1 (IA1)	9
Examination — combination response (25%).....	9
Assessment design	9
Assessment decisions.....	11
Internal assessment 2 (IA2)	16
Investigation — field report (25%).....	16
Assessment design	16
Assessment decisions.....	18
Internal assessment 3 (IA3)	24
Investigation — data report (25%).....	24
Assessment design	24
Assessment decisions.....	26
External assessment	31
Examination — combination response (25%).....	31
Assessment design	31
Assessment decisions.....	31

Introduction

The annual subject reports seek to identify strengths and opportunities for improvement of internal and external assessment processes for all Queensland schools. The 2025 subject report is the culmination of the partnership between schools and the QCAA. It addresses school-based assessment design and judgments, and student responses to external assessment for General and General (Extension) subjects. In acknowledging effective practices and areas for refinement, it offers schools timely and evidence-based guidance to further develop student learning and assessment experiences for 2026.

The report also includes information about:

- how schools have applied syllabus objectives in the design and marking of internal assessments
- how syllabus objectives have been applied in the marking of external assessments
- patterns of student achievement
- important considerations to note related to the revised 2025 syllabus (where relevant).

The report promotes continuous improvement by:

- identifying effective practices in the design and marking of valid, accessible and reliable assessments
- recommending where and how to enhance the design and marking of valid, accessible and reliable assessment instruments
- providing examples that demonstrate best practice.

Schools are encouraged to reflect on the effective practices identified for each assessment, consider the recommendations to strengthen assessment design and explore the authentic student work samples provided.

Audience and use

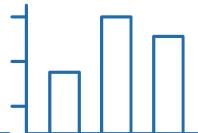
This report should be read by school leaders, subject leaders, and teachers to:

- inform teaching and learning and assessment preparation
- assist in assessment design practice
- assist in making assessment decisions
- help prepare students for internal and external assessment.

The report is publicly available to promote transparency and accountability. Students, parents, community members and other education stakeholders can use it to learn about the assessment practices and outcomes for senior subjects.

Subject highlights

189
schools offered
Geography


9.24%
increase in enrolment
since 2024

97.14%
of students
received a
C or higher

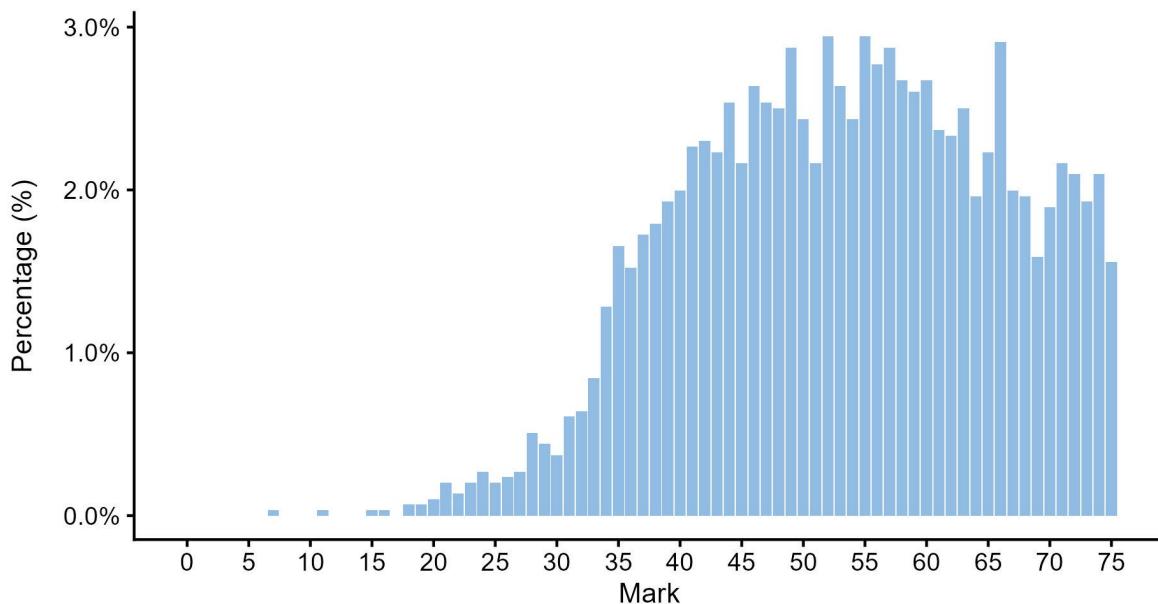
Subject data summary

Unit completion

The following data shows students who completed the General subject or alternative sequence (AS).

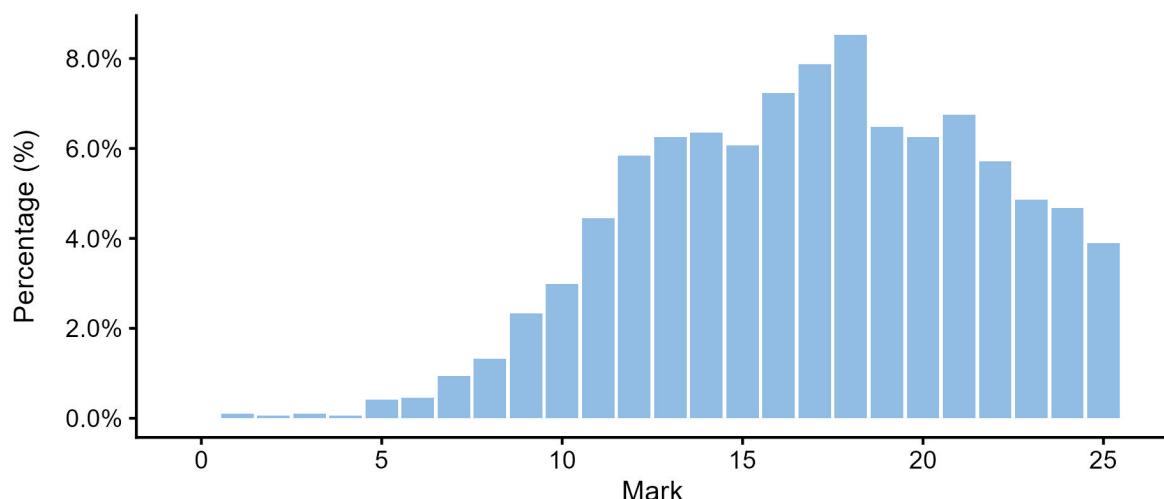
Note: All data is correct as at January 2026. Where percentages are provided, these are rounded to two decimal places and, therefore, may not add up to 100%.

Number of schools that offered Geography: 189.

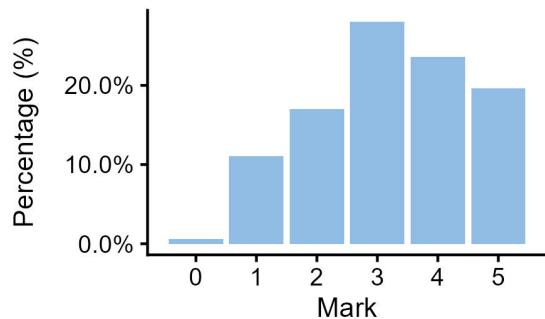

Completion of units	Unit 1	Unit 2	Units 3 and 4
Number of students completed	3,222	3,131	2,939

Units 1 and 2 results

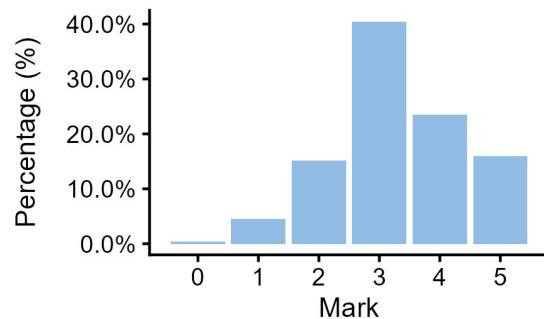
Number of students	Unit 1	Unit 2
Satisfactory	2,957	2,928
Unsatisfactory	265	203

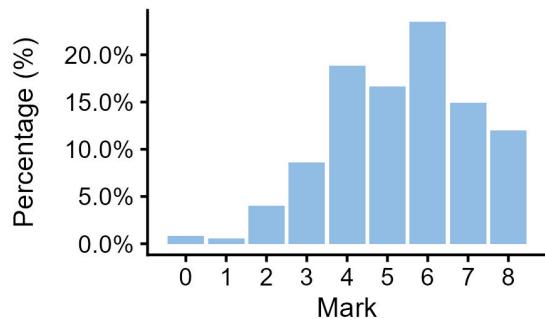

Units 3 and 4 internal assessment (IA) results

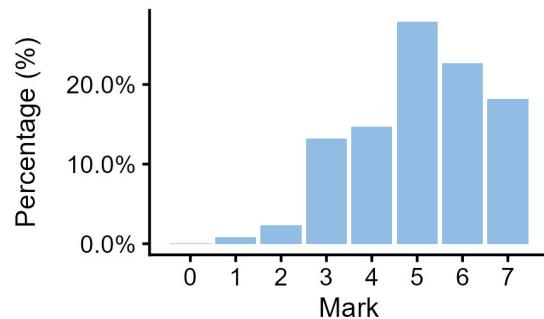
Total marks for IA



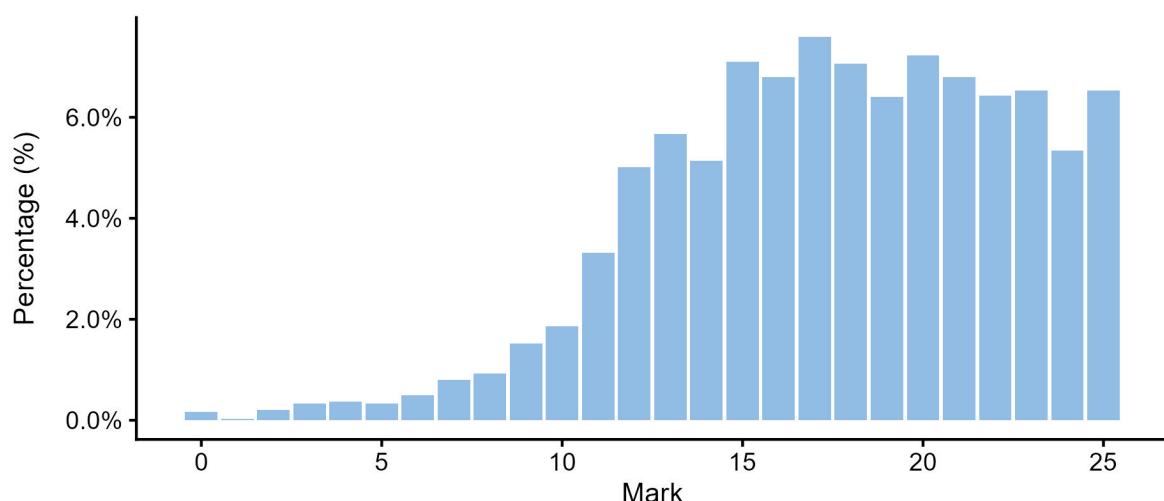
IA1 marks


IA1 total

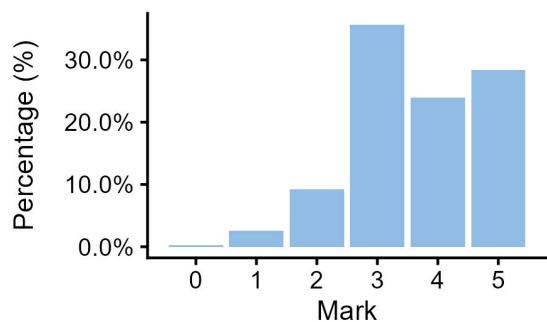

IA1 Criterion: Explaining


IA1 Criterion: Comprehending

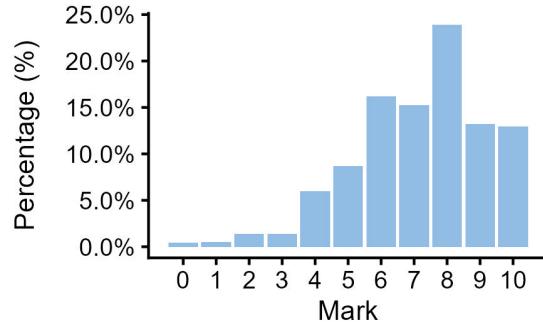
IA1 Criterion: Analysing and applying

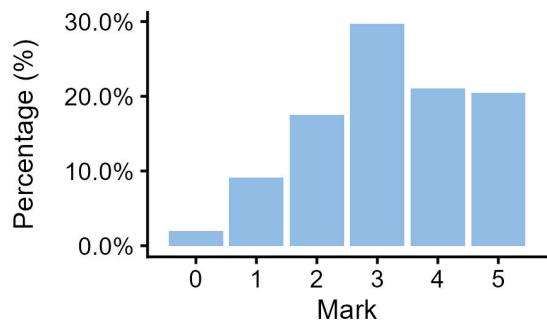


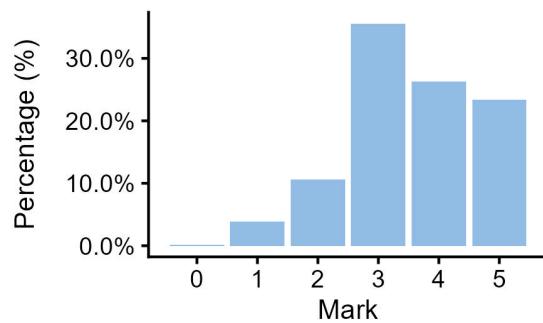
IA1 Criterion: Communicating



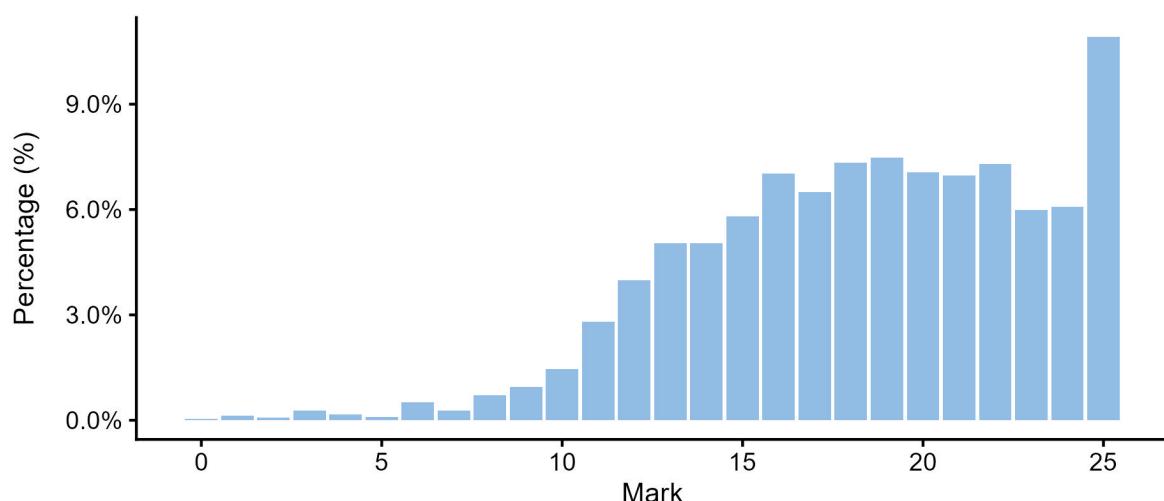
IA2 marks


IA2 total

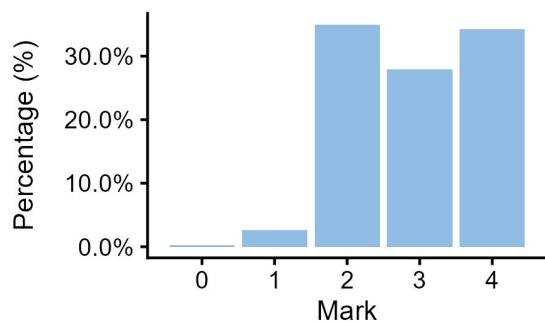

IA2 Criterion: Explaining and comprehending


IA2 Criterion: Analysing and applying

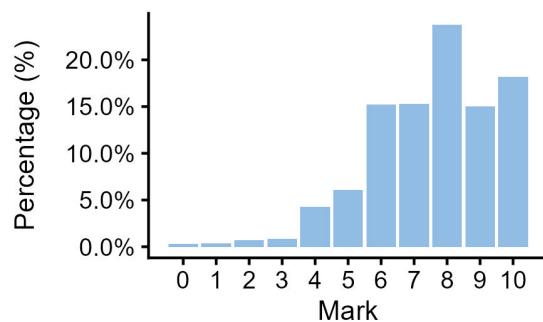
IA2 Criterion: Synthesising

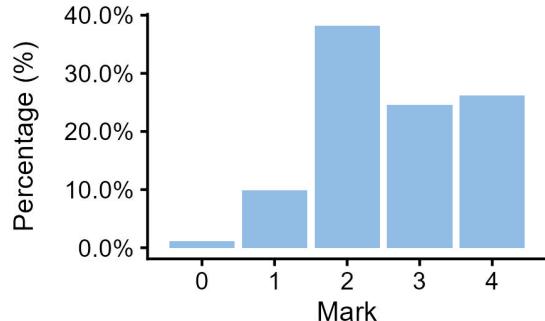


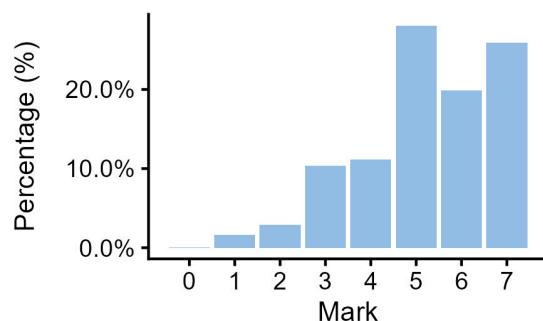
IA2 Criterion: Communicating

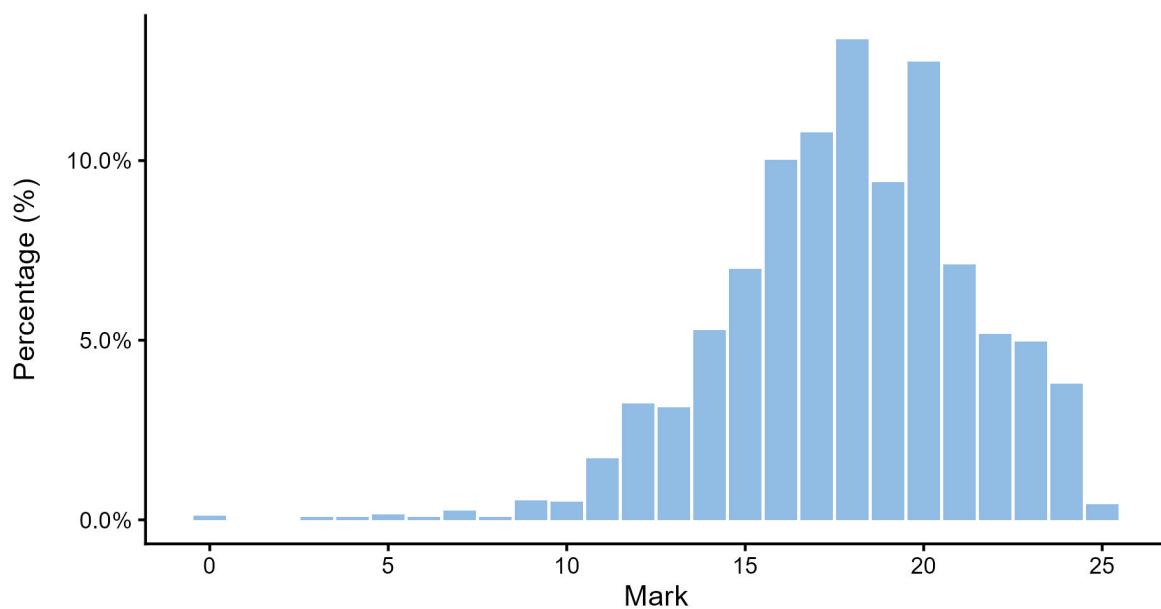


IA3 marks

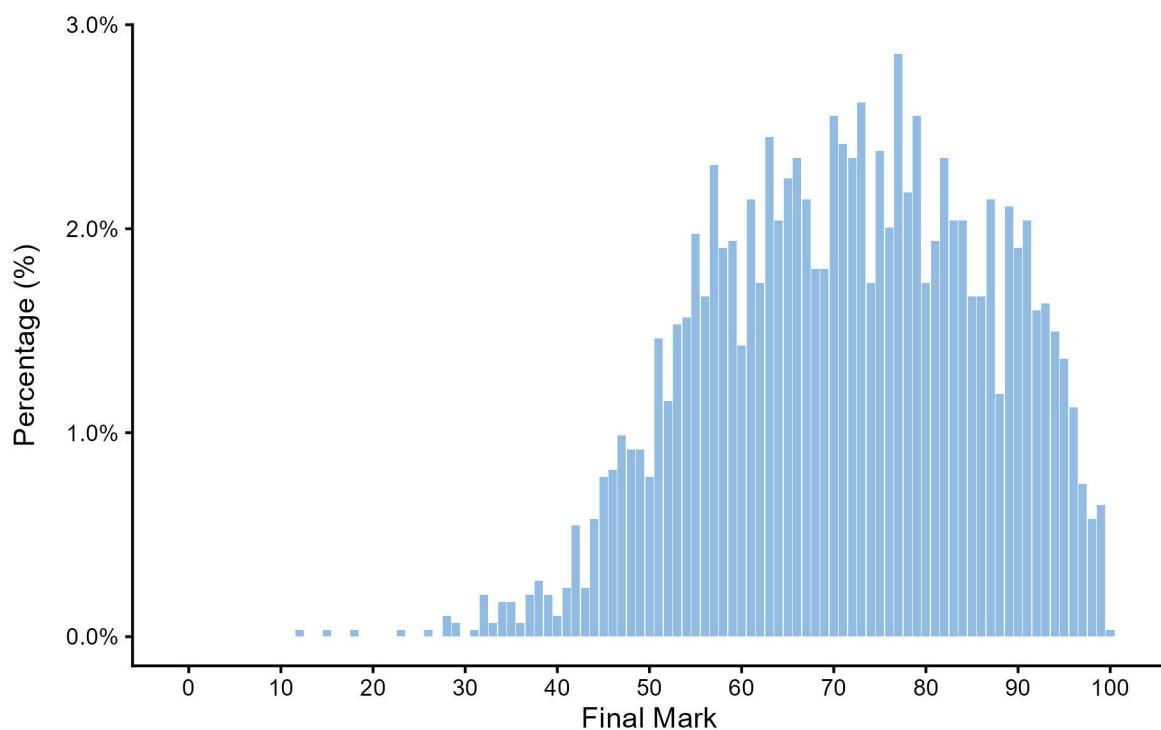

IA3 total


IA3 Criterion: Explaining and comprehending


IA3 Criterion: Analysing and applying


IA3 Criterion: Synthesising

IA3 Criterion: Communicating



External assessment (EA) marks

Final subject results

Final marks for IA and EA

Grade boundaries

The grade boundaries are determined using a process to compare results on a numeric scale to the reporting standards.

Standard	A	B	C	D	E
Marks achieved	100–84	83–67	66–44	43–18	17–0

Distribution of standards

Number of students who achieved each standard across the state.

Standard	A	B	C	D	E
Number of students	705	1,101	1,049	82	2
Percentage of students	23.99	37.46	35.69	2.79	0.07

Internal assessment

This information and advice relate to the assessment design and assessment decisions for each IA in Units 3 and 4. These instruments have undergone quality assurance processes informed by the attributes of quality assessment (validity, accessibility and reliability).

Endorsement

Endorsement is the quality assurance process based on the attributes of validity and accessibility. These attributes are categorised further as priorities for assessment, and each priority can be further broken down into assessment practices.

Data presented in the Assessment design section identifies the reasons why IA instruments were not endorsed at Application 1, by the priority for assessment. An IA may have been identified more than once for a priority for assessment, e.g. it may have demonstrated a misalignment to both the subject matter and the assessment objective/s.

Refer to *QCE and QCIA policy and procedures handbook v7.0*, Section 9.5.

Percentage of instruments endorsed in Application 1

Internal assessment	IA1	IA2	IA3
Number of instruments	187	187	184
Percentage endorsed in Application 1	5	32	28

Confirmation

Confirmation is the quality assurance process based on the attribute of reliability. The QCAA uses provisional criterion marks determined by teachers to identify the samples of student responses that schools are required to submit for confirmation.

Confirmation samples are representative of the school's decisions about the quality of student work in relation to the instrument-specific marking guide (ISMG) and are used to make decisions about the cohort's results.

Refer to *QCE and QCIA policy and procedures handbook v7.0*, Section 9.6.

The following table includes the percentage agreement between the provisional marks and confirmed marks by assessment instrument. The Assessment decisions section for each assessment instrument identifies the agreement trends between provisional and confirmed marks by criterion.

Number of samples reviewed and percentage agreement

IA	Number of schools	Number of samples requested	Number of additional samples requested	Percentage agreement with provisional marks
1	184	1,224	15	86.96
2	184	1,225	5	77.17
3	184	1,217	10	86.96

Internal assessment 1 (IA1)

Examination — combination response (25%)

The examination assesses the application of a range of cognitions to multiple provided items. Items are both short response and extended response using evidence from data. Data consists of a collection of information presented as tables and graphs, maps, diagrams and images with minimal text.

Student responses must be completed individually, under supervised conditions, and in a set timeframe.

Assessment design

Validity

Validity in assessment design considers the extent to which an assessment item accurately measures what it is intended to measure and that the evidence of student learning collected from an assessment can be legitimately used for the purpose specified in the syllabus.

Reasons for non-endorsement by priority of assessment

Validity priority	Number of times priority was identified in decisions
Alignment	185
Authentication	0
Authenticity	14
Item construction	140
Scope and scale	53

Effective practices

Validity priorities were effectively demonstrated in assessment instruments that:

- incorporated multiple opportunities for students to address the assessable objectives and comprehensively demonstrate their understanding throughout Part A
- embedded explicit terminology from the assessment objectives and/or performance-level descriptors in the examination questions to ensure comprehensive and accurate assessment of the intended objectives
- provided stimulus for Part B with suitable scope and scale, enabling students to effectively demonstrate their analytical skills in line with syllabus requirements, e.g. stimulus focused on a particular region or location facing a geographical challenge related to climate change for a specific land cover type. For the AS, a geographical challenge for a megacity in the developing world related to impacts on sustainability and liveability.

Practices to strengthen

It is recommended that assessment instruments:

- include short response questions that provide opportunities for students to demonstrate all the top performance-level descriptors for Comprehending, particularly the recognition of indications of climate change

- provide an extended response question that fully aligns with the analysis objective, to give students the opportunity to address all characteristics in the ISMG. The question should explicitly incorporate the requirement: ‘relationships represent a geographical challenge in relation to climate change for a selected land cover type’, or for the AS, ‘a geographic challenge for a megacity in the developing world’
- include complex stimulus for the extended response that enables students to demonstrate the Analysing & Applying criterion at the upper performance level, including discerning selection of data and astute interpretations and inferences regarding patterns and trends related to the geographical challenge. Avoid overly simplistic stimulus materials, as they typically limit the depth of analysis.

Accessibility

Accessibility in assessment design ensures that no student or group of students is disadvantaged in their capacity to access an assessment.

Reasons for non-endorsement by priority of assessment

Accessibility priority	Number of times priority was identified in decisions
Bias avoidance	33
Language	16
Layout	36
Transparency	25

Effective practices

Accessibility priorities were effectively demonstrated in assessment instruments that:

- aligned with the syllabus word count requirements and allocated response space that reflected the expected length of each response
- gave clear instructions using cues that aligned to the specifications, objectives and ISMG
- included high-quality stimulus (where applicable) consisting of a variety of visual texts (e.g. maps, graphs, limited text) that were presented clearly and without overcrowding. It is not necessary to provide URLs for stimulus.

Practices to strengthen

It is recommended that assessment instruments:

- are reviewed in PDF format prior to submission for endorsement to ensure that all task formatting is appropriate and aligns with the IA1 quality assurance tool in both the Endorsement application (app) and the Resources section of the Syllabuses app
- include stimulus that
 - is free from unnecessary distractors
 - does not contain any text or data that may inadvertently provide answers or is not essential for responding to the task.

Additional advice

When developing an assessment instrument for this IA, it is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- The requirement for a detailed explanation of interactions between biophysical and anthropogenic processes that result in land cover change and climate change is now addressed in two separate descriptors.
- Assessment objective 6 and the ISMG for the Communicating criterion have been revised. IA1 no longer includes a requirement to create cartographic and graphic representations, or the transformation and representation of geographical data and information. The revised Communicating criterion in the 2025 syllabus now requires students to communicate geographical understanding using appropriate forms of geographical communication.
- The syllabus conditions no longer include word length for examinations. The *QCE and QCIA policy and procedures handbook v7.0* (Section 8.2.6) provides guidance about managing response length. This guidance applies to more open-ended assessment techniques, such as essays, reports and presentations. By specifying a maximum length for student generated work for these techniques, the expected scope of the task is appropriately limited. Managing response length does not apply to examinations. For examinations, the syllabus assessment conditions specify the time allocated, including any perusal or planning time. Schools should design examinations with an appropriate number of questions, and provide suitable space or lines for responses, to guide students in completing the examination within the allowed time. A required or recommended word length must not appear on IA1 instruments.

Assessment decisions

Reliability

Reliability refers to the extent to which the results of assessments are consistent, replicable and free from error.

Agreement trends between provisional and confirmed marks

Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Explaining	96.20	3.80	0.00	0.00
2	Comprehending	96.74	3.26	0.00	0.00
3	Analysing and applying	95.65	4.35	0.00	0.00
4	Communicating	93.48	3.80	2.17	0.54

Effective practices

Reliable judgments were made using the ISMG for this IA when:

- for the Explaining criterion, marks were allocated where responses explained how anthropogenic and biophysical interactions result in land cover change and a changing climate. For example, because forests store more CO₂ in their biomass than croplands, the transformation of forest to cropland results in emissions of CO₂ to the atmosphere. This contributes to enhanced greenhouse gases, atmospheric warming and a changing climate

- for the Comprehending criterion, judgments recognised that responses
 - showed comprehensive recognition of spatial patterns of land cover change when they used information from maps to describe what, where and how much land cover change had occurred for a specific area
 - identified significant relationships and implications when they used reasoning to explain how land cover change may lead to climate-related consequences for specific people and/or places, e.g. linking deforestation in South-East Asia to rising temperatures and reduced rice yields, which could affect food security in communities.

Practices to strengthen

When making judgments for this IA for the 2025 syllabus revision, it is essential to consider the following key differences between the ISMGs in the 2019 and 2025 revisions:

- The Explaining criterion now has separate descriptors that assess explanations of interactions that result in land cover change, and explanations of interactions that result in climate change. A third descriptor requires students to explain relationships between land cover change and climate change.
- For the Comprehending criterion, the 2025 syllabus requires students to identify relationships and implications for people *and/or* places, rather than implications for both people and places.
- Revisions to the Analysing and Applying criterion mean students will be assessed on how effectively they use data and information contained in stimulus (rather than simply selecting relevant data and information as per the 2019 syllabus).
- The Communicating criterion in the 2025 syllabus no longer requires students to transform geographical data and information to create a map and/or graph.

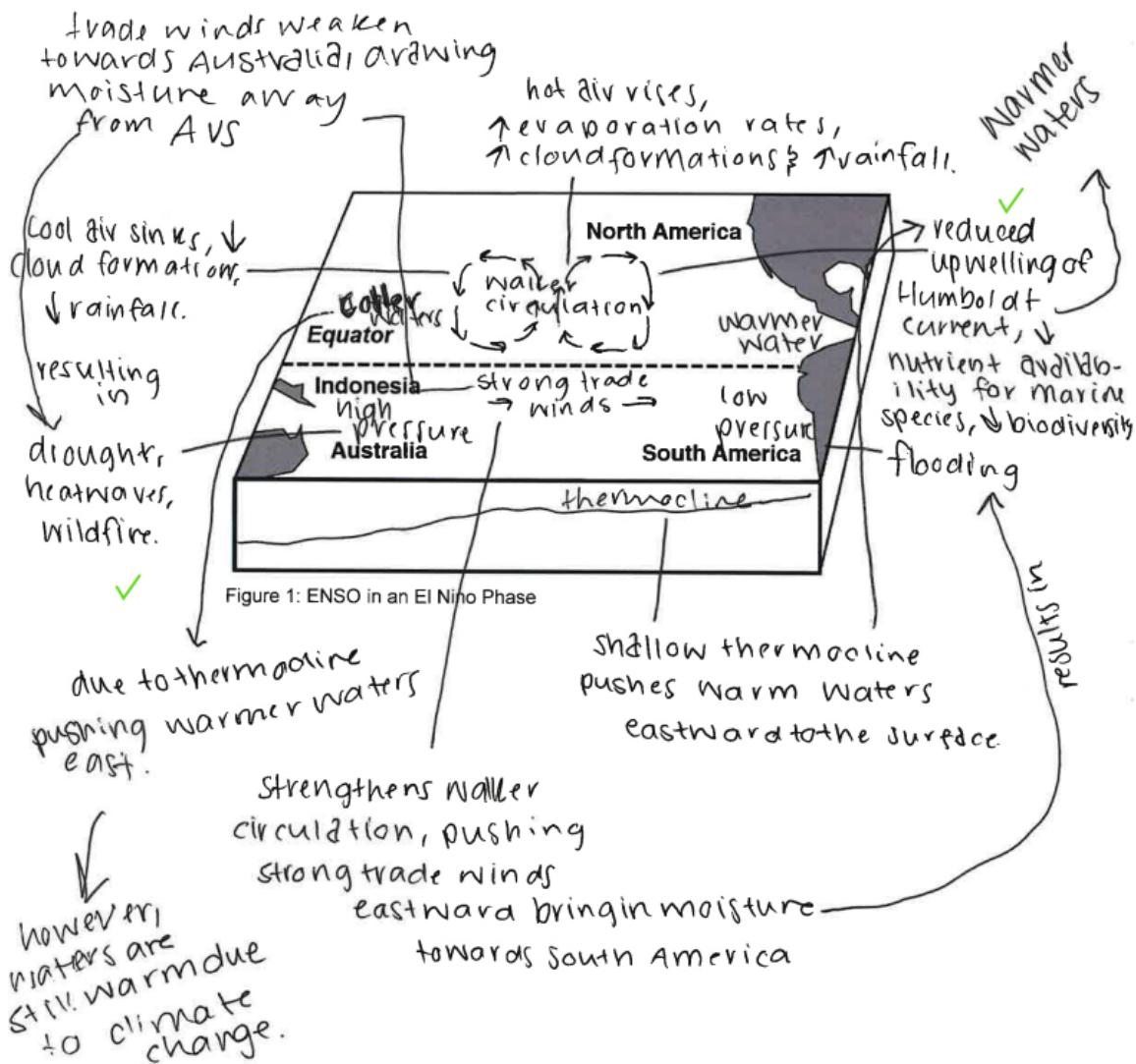
To further ensure reliable judgments are made using the ISMG for this IA, it is recommended that:

- the match of evidence to the upper performance level for Analysing and Applying clearly and accurately identifies a geographic challenge in relation to climate change for a land cover type. The analysis must use spatial and temporal data from multiple sources to make inferences about the causes of the geographical challenge. Students must make well-reasoned generalisations about the impacts of the challenge on both biophysical and anthropogenic environments.

Additional advice

It is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- The Communicating criterion has been revised. For this criterion in the 2025 syllabus
 - annotated diagrams, such as flow charts and concept maps, are appropriate forms of geographical communication and effectively communicate understanding by explaining relationships, processes or significance, whereas labelling diagrams demonstrates simple recall
 - students may use spatial technologies and/or ICT to represent data in cartographic and graphic forms.


Samples

The following excerpts demonstrate evidence that matches the upper performance-level descriptors for the Explaining, Comprehending and Analysing and applying criteria.

Excerpt 1 demonstrates in-depth explanations describing a variety of features and elements of biophysical and anthropogenic processes that shape the identity of specific regions in Australia influenced by El Niño. The response demonstrates comprehensive explanations of the complexity of interactions between climate change and El Niño that result in land cover change to soils and coral in Australian environments.

Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 1

El Niño is a high-pressure system, weakening trade winds and drawing moisture and rainfall away from Australia, particularly in north and east, leading to drier soils and drought which disrupt agriculture. Climate change is likely to exacerbate effects, warmer waters increase evaporation rates, amplifying frequency, severity, and duration of droughts and reduced rainfall. Prolonged dry periods and heatwaves heighten wildfire risks by reducing soil moisture. Warmer surface waters suppress usual upwelling of the Humboldt current, limiting nutrient availability and increasing coral vulnerability due to reduced calcification rates. Intensified El Niño events pose significant threats to Australia's ecosystems by modifying habitats and reducing species biodiversity.

Excerpt 2 demonstrates comprehensive recognition of spatial patterns using data and location in the description. It is also aligned to the upper performance level for the Comprehending criterion because it demonstrates identification of significant relationships and implications for people and/or places.

Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 2

Figure 1 shows there is a 10 - 20ml rain increase ^{from 1970 - 2020 across} in central, Northern, South-East and North-West regions of WA. Increases are also in a band across the North of the Northern Territory and ^{Western} South Australia. Queensland, NSW, ~~Eastern~~ Western WA, and Tasmania and majority of SA remain unchanged except for pocket of areas on the East Coast with 40% decreases. This may be because of a Positive Indian Ocean Dipole cycle resulting in increased precipitation. This can lead to significant flooding in affected water ways which then erodes banks along these waterways. Regionally, flooding is a major issue.

Excerpt 3 demonstrates sophisticated extrapolation from the analysis to make generalisations about the impacts of climate change on biophysical and anthropogenic environments in Mumbai as a result of sea level rise. This demonstrates the upper performance level for the Applying criterion.

Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 3

The impacts of climate change in Mumbai due to the risk of rising sea levels include more frequent and severe flooding, saltwater inundation and damage to critical infrastructure. Most of Mumbai consists of land use changes for built-up areas as seen from Stimulus 6; however, it is these areas that are most at risk to rising sea levels. Furthermore, these areas will likely experience more frequent and intense flooding over the coming years, impacting large amounts of the population, making it extremely difficult to re-build and increasing insurance costs. Flooding will severely affect those living in informal settlements as they will likely not be able to re-build and will have to continue living in flooded areas, increasing the risks of diseases. As sea levels rise, saltwater may potentially inundate freshwater systems. This would cause a shortage of safe drinking water in Mumbai, leading to increased costs of water supplies. Additionally, rising sea levels will likely severely impact infrastructure over the entirety of Mumbai. From Stimulus 8 it can be seen that majority of the infrastructure lies in the south-western area of the city. This area is particularly vulnerable to rising sea levels by significantly impacting hospitals, potentially increasing the death toll due to climate change. Furthermore, transport systems will likely be severely affected by inundation as sea levels rise. This would result in high costs for either mitigation or relocation strategies which has significant economic impacts for local and national governments.

Internal assessment 2 (IA2)

Investigation — field report (25%)

This assessment requires students to research a land-management or water-management challenge at a local scale through a field investigation. A field investigation assesses a range of cognitions in a particular context including observing, questioning, planning, collecting, recording, representing, analysing and responding to primary data and communicating geographical understanding in a field report.

The assessment occurs over a defined period of time. Students may use class time and their own time to develop a response.

Assessment design

Validity

Validity in assessment design considers the extent to which an assessment item accurately measures what it is intended to measure and that the evidence of student learning collected from an assessment can be legitimately used for the purpose specified in the syllabus.

Reasons for non-endorsement by priority of assessment

Validity priority	Number of times priority was identified in decisions
Alignment	123
Authentication	7
Authenticity	12
Item construction	11
Scope and scale	37

Effective practices

Validity priorities were effectively demonstrated in assessment instruments that:

- identified appropriate field study location/s that allowed students to respond effectively within the prescribed word length
- included clear and concise instructions for the steps to complete the investigation, which focused on the collection and analysis of fieldwork data
- clearly specified that the field investigation would be conducted at a local scale, with a focus on a land management or water management challenge or, for the AS, a local sustainability or liveability challenge.

Practices to strengthen

It is recommended that assessment instruments:

- provide a clear and concise context statement that accurately reflects the focus of the investigation and aligns with the instrument specifications, without identifying the causes of the challenge or suggesting potential responses

- include scaffolding that aligns with syllabus specifications, offering clear guidance on the required sections to be included in the written report, e.g. ensure the conclusion references 'proposal/s' to indicate that students may present either a single proposal or multiple proposals in this section
- offer opportunities for primary data collection that enable students to meet the requirements of the Analysing and Applying criterion. The use of secondary data and information should be minimal, if included at all.

Accessibility

Accessibility in assessment design ensures that no student or group of students is disadvantaged in their capacity to access an assessment.

Reasons for non-endorsement by priority of assessment

Accessibility priority	Number of times priority was identified in decisions
Bias avoidance	0
Language	5
Layout	1
Transparency	1

Effective practices

Accessibility priorities were effectively demonstrated in assessment instruments that:

- consistently used accurate, relevant geographical terminology that was appropriate to the context of the investigation
- were thoroughly edited to ensure clarity, coherence and the absence of grammatical, spelling and punctuation errors.

Practices to strengthen

It is recommended that assessment instruments:

- focus on collecting and analysing fieldwork data. The requirement to use secondary data and information must be limited, if included at all
- provide scaffolding that aligns with the specifications, especially the requirement for an appendix (other than for raw fieldwork data), and does not include extra information. Information included in an appendix cannot be used to make a decision about student achievement (see *QCE and QCIA policy and procedures handbook v7.0*, Section 8.2.6).

Additional advice

When developing an assessment instrument for this IA, it is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- The report writing structure for Geography has moved to the Additional subject-specific information section of the 2025 syllabus (p. 8). This should still be used as the scaffolding for the task. There is no requirement to include a methodology statement in the report.

- The ISMG has been revised, including revisions to the descriptors for each assessable objective, e.g.
 - the Synthesising criterion has been revised to Proposing action in the 2025 syllabus, and the descriptor 'makes informed proposal/s to manage the impacts of the identified challenge' has been replaced by 'justified action/s to create or improve the sustainability at the fieldwork location'
 - in the Communicating criterion, creating cartographic and graphic forms are now included in separate descriptors to allow for a more fine-grained match of evidence to the ISMG.

Assessment decisions

Reliability

Reliability refers to the extent to which the results of assessments are consistent, replicable and free from error.

Agreement trends between provisional and confirmed marks

Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Explaining and comprehending	96.20	3.26	0.54	0.00
2	Analysing and applying	86.41	13.04	0.00	0.54
3	Synthesising	92.93	6.52	0.54	0.00
4	Communicating	85.87	12.50	1.09	0.54

Effective practices

Reliable judgments were made using the ISMG for this IA when:

- for responses that were matched to the upper mark range, evidence clearly aligned to the performance-level descriptors. This included where
 - for the Explaining and Comprehending criterion
 - explanations identified the connections between the environmental (biophysical) and human (anthropogenic) processes that interacted at the fieldwork location to cause the land cover change/s. Specific field data and information was used to describe the cause–effect relationships, and the implications of these relationships for people and places
 - accurate description/s of the land cover was represented in annotated map/s
 - for the Analysing and applying criterion
 - generalisations demonstrated a deep understanding of the analysis by identifying current and/or future impacts on people, places and/or environments that were sophisticated (comprehensive and complex) and evidence-based, with links to the fieldwork data

- for the Synthesising criterion
 - a valid action/s was proposed that addressed the sustainable management of current and/or future impacts of the geographical challenge, as identified in the analysis, at the fieldwork location
 - decisions were well-informed and supported with relevant evidence from the analysis.

Practices to strengthen

To further ensure reliable judgments are made using the ISMG for this IA, it is recommended that:

- for the Analysing and Applying criterion:
 - the land-management or water-management challenge being investigated is a direct result of land cover transformation at a selected fieldwork location. The causal relationships can be observed and are suited to data collection
 - the data collected is valid and reliable field data that can be transformed and represented as maps and graphs and used to analyse and explain relationships between specific patterns and trends that are causing the challenge at the fieldwork location
 - the data collection methods ensure students gather appropriate data. Common and relevant fieldwork techniques include
 - sampling, e.g. point sampling, belt transects, quadrats
 - profiles, e.g. elevation, succession
 - annotated photographs and field sketches.

Additional advice

It is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- In the 2025 syllabus, methodology is no longer required for the field report.
- Proposing action has replaced Synthesising as an assessment objective.
- Communicating now has five performance-level descriptors. Creating cartographic and graphic forms have been separated to allow for a finer grained match of evidence to the performance-level descriptor.

Schools should also:

- understand that to achieve the upper performance level for the Communicating criterion, students must
 - transform relevant fieldwork data to create maps and graphs that adhere to geographic conventions
 - use spatial technologies and/or ICT to visually represent primary data and information collected in the field
 - adapt any downloaded maps with appropriate overlays and annotations to ensure they represent the relationships evident at the fieldwork location
 - include sophisticated graphic forms such as multiple line graphs, compound bar charts, scatter plots and ternary diagrams
 - apply the report writing structure for Geography to present the investigation findings using clear and concise geographical terminology.

Samples

The following excerpts demonstrate the upper performance-level descriptors for the Analysing and applying, Synthesising and Communicating criteria.

Excerpt 1 demonstrates a discerning selection of fieldwork data and information (e.g. stream bank and bed stability, turbidity levels, erosion risk rating) to inform astute interpretations and inferences. The analysis identifies the relationships between multiple environmental factors such as vegetation clearing, steep slopes and limited riparian zones, and how these interact to create a pattern of instability at the fieldwork location. The analysis reveals the geographical challenge of erosion and bank degradation.

Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 1

The Mary River landscape is shaped by the interplay of fluvial and biophysical processes, leading to erosion and its flow-on implications. Cattle farming surrounded each site, contributing to erosion by compacting soil, reducing vegetation and increasing sediment and pathogen runoff (Figure 4). Furthermore, each site had moderate habitat quality, however significant deposition at all locations illustrates active sediment transport, reinforced by high turbidity, suggesting high levels of erosion (Figure 5-7). The poor quality of riparian vegetation, evidenced by low soil moisture and canopy cover exacerbates erosion, as plant roots bind soil stabilising riverbanks (Mackay, 2025). All locations had steep left banks which increase gravitational forces, accelerating soil movement, slumping and thus erosion (Figure 9-11). The combination of steep slopes and lack of riparian vegetation increases the energy of runoff which accelerates erosion.

Stream habitat ratings ranged from 6/10 to 8/10. Pickering Bridge had the most diverse channel habitat, indicating a healthier stream ecosystem compared to Baillies and Charles Street. Flow rates were moderate, with Pickering Bridge having the highest at $0.29\text{m}^3/\text{s}$, supporting more stream habitats (Figure 5). All sites featured mid-channel bars, runs, meanders, riffles and large sediment deposits, indicating active transport (Figures 5-7). The in-stream habitats were robust however limited canopy and vegetative cover across all locations can increase water temperature, potentially causing ecological stress (Figure 5-7).

3.2.1 Pickering Bridge

The Mary River at Pickering Bridge frequently meandered, had mid-channel bars, deeper pools, backwater sections and a higher flow rate ($0.29\text{m}^3/\text{s}$), leading to the high channel habitat rating of 4/5 (Figure 5). In-stream habitats were abundant (rated 4/5) including logs, branches, twigs and algal growth, however, canopy cover was minimal, reducing the quality of in-stream habitats (Figure 5).

Figure 5: Pickering Bridge stream habitat (Google Earth, 2024).

Analysis of stream bank and bed stability reveals a strong relationship between steep slopes, poor soil composition and limited vegetation, and bank instability. Pickering Bridge was extensively unstable and most prone to erosion, evidenced by steep banks, limited vegetation and significant slumping. Here turbidity was highest (27NTU), and slope angle was most extreme (30°) (Figure 9). Baillies was moderately unstable, with diverse riparian vegetation, however steep banks a slope angle (23°) demonstrate susceptibility to erosion (Figure 10). The turbidity at Baillies (22NTU) was lower than Pickering Bridge (27NTU) suggesting less sediment transport and thus less erosion. Charles Street was also moderately unstable but demonstrated the most resilience with developed riparian vegetation, the lowest turbidity (5NTU) and a gent slope angle (14°), though minimal vegetation near the channel reduces stability (Figure 11). Nutrient levels were moderate across all sites suggesting stability; however, the moisture content (average 8%) was below the ideal range for vegetation growth (21-40%), indicating poor quality of soil (Figure 8) (Redmon, 2024). The sand to loamy sand soil at Baillies and Pickering Bridge is highly prone to erosion due to its loose structure, reducing root stability and increasing susceptibility surface runoff (Figure 8) (Ramya, 2023). However, Charles Street has loam to clay loam soil, which retains more moisture better supports vegetation and is considered the most fertile soil, therefore decreasing erosion risk (Ersek, 2020).

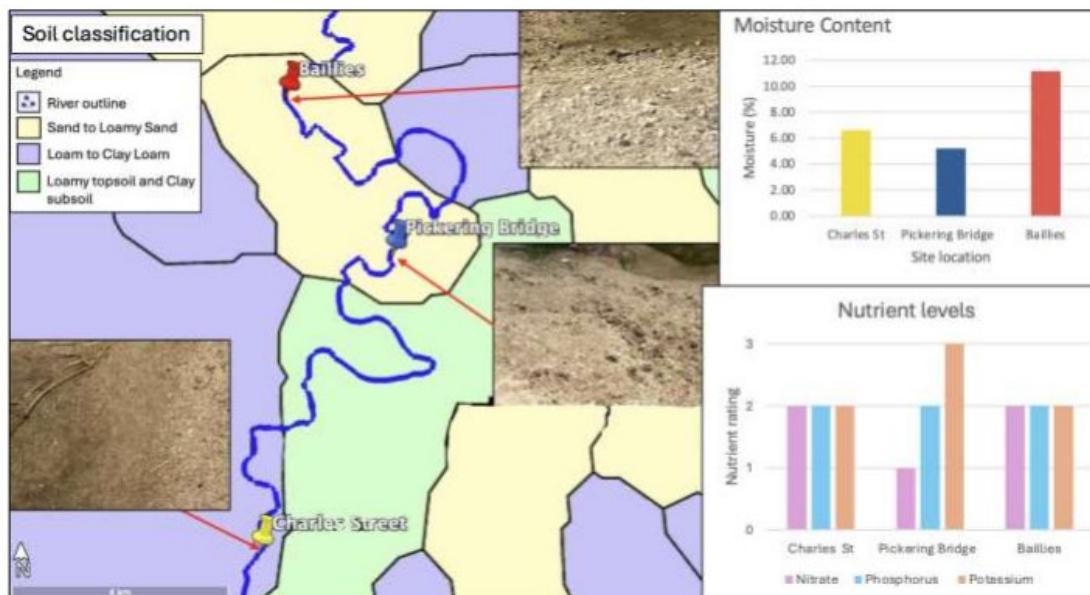


Figure 8: Soil composition (Mary River Catchment Coordinating Committee, 2000b).

The bank and bed stability of Pickering Bridge was assessed to be extensively unstable due to vegetation clearing, significant slumping, small riparian zones and steep slopes (30° on the left and 5m decrease in 10m on the right). Furthermore, turbidity was high (27NTU) suggesting ongoing erosion and sediment input. Riparian vegetation was insufficient, consisting of only grasses, heightening erosion risk (rated 3/5).

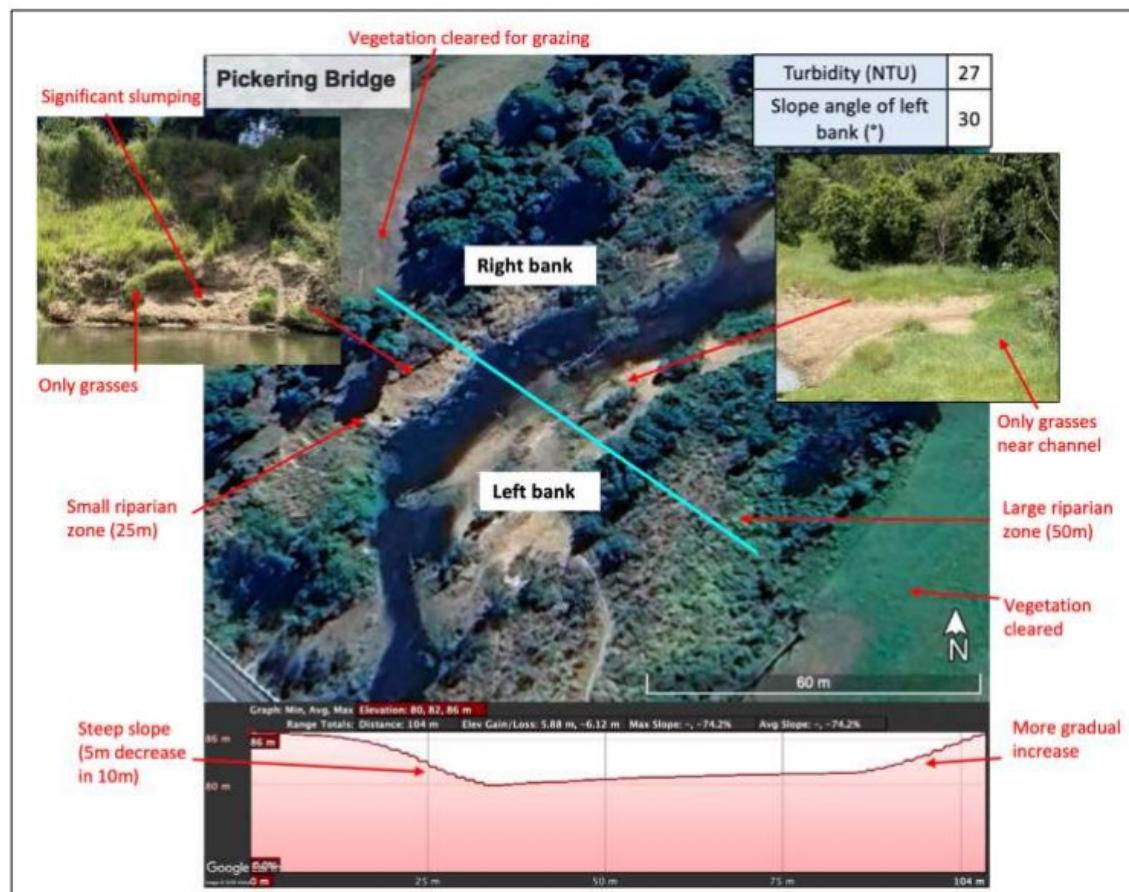
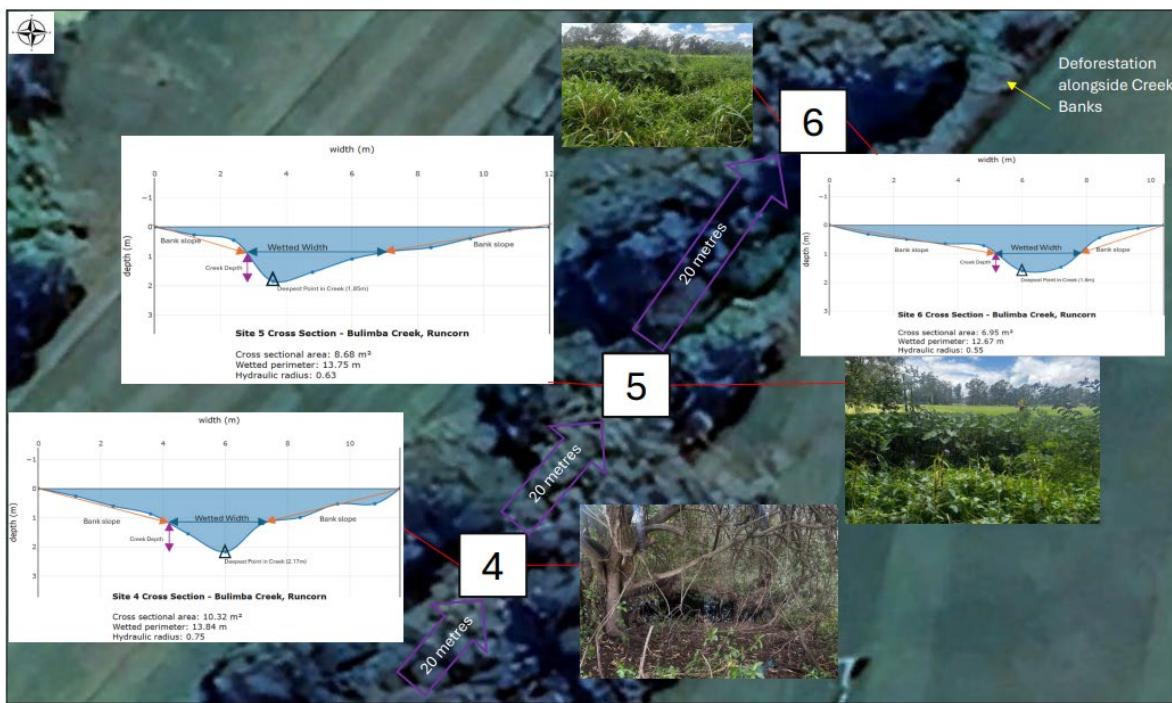


Figure 9: Pickering Bridge stream bank analysis (Google Earth, 2024).

Excerpt 2 demonstrates:

- an insightful synthesis and a justified proposal because it proposes strategies informed by the analysis (channel widening, vegetated riprap and land rehabilitation) that directly address the erosion and ecological degradation to improve water quality and habitat connectivity
- proficient transformation of data and information into sophisticated graphs.


Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 2

Data analysis reveals that soil and water quality within the Bulimba Creek catchment at Runcorn are under significant stress, particularly in the stretch between Sites 4 and 7. These challenges affect key biological processes such as nutrient cycling, filtration of pollutants, and habitat stability; processes essential for sustaining a healthy freshwater ecosystem. Evidence of lowered water quality suggests active erosion and sedimentation, while limited vegetation cover in some zones indicates poor soil structure and compromised habitat for aquatic and riparian species.

Three viable and context-sensitive proposals to address these land and water management challenges are:

1. **Widening the creek channel between Sites 4 and 7 to minimise bed scour and reduce the velocity of stormwater flows, accelerating erosion and sediment transport during heavy rainfall events.**
2. **Installing vegetated riprap along the creek banks** stabilises soil, traps sediments, and reduces runoff-borne pollutants. This would also support native plant growth, providing shade and organic matter to the waterway.
3. **Rehabilitating the land between Sites 5 and 7, including the Disturbed Site**, through targeted replanting and soil remediation. This would restore critical ecological functions, improve soil permeability and nutrient retention, and enhance the quality and connectivity of habitats for local wildlife.

Internal assessment 3 (IA3)

Investigation — data report (25%)

This assessment requires students to research a specific challenge or problem (at a local scale of study, for a place in Australia) through collecting, representing, analysing and responding to a range of data that is both teacher-provided and student researched. A geographic inquiry uses research practices to assess a range of cognitions in a particular context. Research practices include locating and using information beyond students' own knowledge and the data they have been given.

This assessment occurs over a defined period of time. Students may use class time and their own time to develop a response.

Assessment design

Validity

Validity in assessment design considers the extent to which an assessment item accurately measures what it is intended to measure and that the evidence of student learning collected from an assessment can be legitimately used for the purpose specified in the syllabus.

Reasons for non-endorsement by priority of assessment

Validity priority	Number of times priority was identified in decisions
Alignment	59
Authentication	1
Authenticity	7
Item construction	78
Scope and scale	85

Effective practices

Validity priorities were effectively demonstrated in assessment instruments that:

- incorporated population challenges that emerged from a location's demographic profile (e.g. ageing or youth-dominated populations) or from the rate of population change. These challenges were typically framed around how services or infrastructure respond to the needs of specific demographic groups, ensuring alignment with the intent of the syllabus and offering authentic contexts for student analysis. For example, an initial data set illustrating rapid population growth over time was used to investigate the challenge of increasing population density.

Practices to strengthen

It is recommended that assessment instruments:

- include stimulus items of a suitable scope and scale. Where Australian Bureau of Statistics (ABS) data is used, the initial datasets must identify the relevant statistical areas to ensure students are accessing data for the same place to inform their investigation

- provide initial datasets that align with a relevant geographical challenge, allowing students to effectively demonstrate the assessment objectives of Analysing and Applying. While locations such as some inner-city suburbs and mining towns may exhibit distinct demographic characteristics (e.g. ageing, youth, working age), they typically possess a high level of services and/or infrastructure that adequately meet community needs. As such, these areas may not present sufficient geographical challenges for meaningful student investigation
- include fundamental raw data that has not been analysed, summarised or transformed in any way. This includes the removal of the median age from the initial demographic data from the ABS.

Accessibility

Accessibility in assessment design ensures that no student or group of students is disadvantaged in their capacity to access an assessment.

Reasons for non-endorsement by priority of assessment

Accessibility priority	Number of times priority was identified in decisions
Bias avoidance	2
Language	4
Layout	0
Transparency	1

Effective practices

Accessibility priorities were effectively demonstrated in assessment instruments that:

- articulated the task requirements and contextual framework effectively using clear, precise language and appropriate geographical terminology.

Practices to strengthen

It is recommended that assessment instruments:

- include scaffolding that is explicitly aligned with syllabus specifications, providing clear and structured instructions that guide students on the required components for inclusion in the written report.

Additional advice

When developing an assessment instrument for this IA, it is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- The report writing structure for Geography has moved to the Additional subject-specific information section of the 2025 syllabus (p. 8). This should still be used as the scaffolding for the task. There is no requirement to include a methodology statement in the report.
- The ISMG has been revised, including revisions to the descriptors for each assessable objective, e.g.
 - the Synthesising criterion has been revised to Proposing action in the 2025 syllabus. Descriptors include 'insightful proposal/s in response to the generalisations' and 'justified action to address the impact/s of the identified challenge/s'
 - in the Communicating criterion, creating cartographic and graphic forms are now included in separate descriptors.

Assessment decisions

Reliability

Reliability refers to the extent to which the results of assessments are consistent, replicable and free from error.

Agreement trends between provisional and confirmed marks

Criterion number	Criterion name	Percentage agreement with provisional	Percentage less than provisional	Percentage greater than provisional	Percentage both less and greater than provisional
1	Explaining and comprehending	97.83	2.17	0.00	0.00
2	Analysing and applying	92.93	5.98	0.54	0.54
3	Synthesising	99.46	0.54	0.00	0.00
4	Communicating	88.59	10.87	0.00	0.54

Effective practices

Reliable judgments were made using the ISMG for this IA when:

- for responses that were matched to the upper mark range, evidence clearly aligned to the performance-level descriptors. This included where
 - for the Explaining and Comprehending criterion
 - descriptions of the demographic change/s were comprehensive and included student-created maps that clearly showed the spatial distribution of the demographic change/s for the place investigated
 - descriptions of the spatial patterns used appropriate quantitative data shown on the map using appropriate geographical terminology. Simply describing the location of a place or describing the distribution of services and facilities is not recognition of spatial patterns of demographic or population change for the place
 - for the Synthesising criterion
 - proposed action/s were plausible and addressed current and/or future impacts of the geographical challenge/s at the place in Australia
 - proposals were justified using evidence from the analysis.

Practices to strengthen

To further ensure reliable judgments are made using the ISMG for this IA, it is recommended that:

- for the Communicating criterion, the syllabus requirements for using spatial technologies and/or ICT to generate maps and graphs (2019 syllabus, p. 52; 2025 syllabus, p. 40) are adhered to by students. For example, maps can be created using Google Earth, QGIS, ArcGIS, Google My Maps Scribble Maps or Data Wrapper, and graphs can be created using Excel or Data Wrapper, or Live Gap Charts

- for the Analysing and applying criterion, marks are allocated where responses clearly demonstrate meaningful connections between the teacher-provided data and additional data collected by students. The relationships in the data should be used to identify the challenge/s in the chosen Australian location.

Additional advice

It is essential to consider the following key differences between the 2019 and 2025 syllabuses:

- For the Explaining and comprehending criterion, the first performance-level descriptor in the ISMG has been revised. In the 2025 syllabus, this descriptor requires students to explain the geographic processes and interactions that result in demographic *or* population change for a place in Australia.
- The IA3 specifications have been revised. Students may focus the data investigation on a single identified challenge; however, they will also have the option to investigate multiple identified geographical challenges for a place in Australia.
- Proposing action has replaced Synthesising as an assessment objective.
- Communicating now has five performance-level descriptors. Creating cartographic and graphic forms have been separated to allow for a finer grained match of evidence to the performance-level descriptor.

Samples

The following excerpts demonstrate the upper performance levels for the Explaining, Analysing and applying and Communicating criteria.

Excerpt 1 demonstrates:

- an in-depth explanation of the demographic processes that have resulted in demographic change for Yarrabilba. It uses the analysis to inform the explanation
- astute interpretations of the demographic data for Yarrabilba to make inferences about the geographical challenge of providing suitable services and infrastructure for a youthful population.

Note: The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

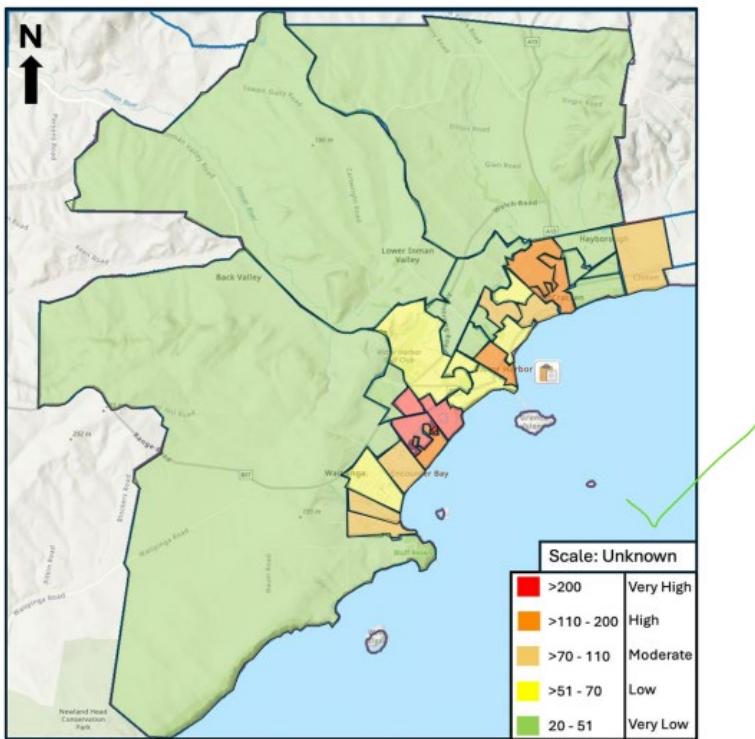
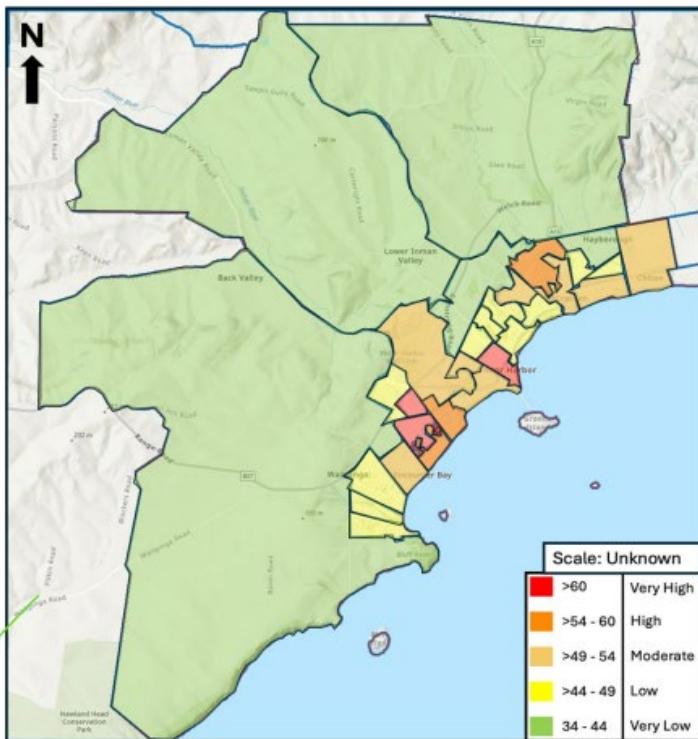

Excerpt 1

Figure 4 reveals a distinctly youthful population profile. The largest demographic segments are children aged 5–9 make up 12% of the population, while adults aged 25–39 account for over 30%, highlighting the dominance of young families in the community. Males and Females are relatively evenly distributed across all age groups, though females slightly outnumber males in the 25–34 range. The slight predominance of females in the 25–34 age group may reflect family formation trends and could influence future service needs such as maternal health and childcare. This trend reflects national census data showing that Yarrabilba has a median age of 26, considerably younger than the national median of 38 (ABS, 2021). The narrow upper portion of the pyramid, representing residents aged 60 and over, suggests a lower proportion of older adults compared to more established suburbs. This aligns with Yarrabilba's status as a newly developed urban area that attracts younger households seeking affordable housing and modern amenities. These trends indicate a strong need for early learning centres, schools, youth services, and family orientated infrastructure. Planning should prioritise education, childcare, and employment opportunities tailored to younger adults, alongside long-term strategies to accommodate this population as it ages.


Figures 5 and 6 illustrate the two key demographic processes contributing to Yarrabilba's rapid population growth between 2016 and 2021: internal migration and natural increase. Figure 5 shows that Yarrabilba experienced significant internal migration, with many new residents relocating from other parts of Australia. This is consistent with its rapid urban development and rising population, which increased by over 150% during this period (ABS, 2021). While neighbouring Jimboomba has a higher proportion of overseas-born residents, Yarrabilba's growth appears to be driven primarily by Australian-born families seeking affordable housing. Figure 6 highlights Yarrabilba's high rate of natural increase—between 1.01 and 1.33 per 100 people—one of the highest in the Logan-Beaudesert region. This is attributed to its youthful population, high birth rates, and low death rates, consistent with its appeal to young families and first-home buyers. Together, these trends reinforce Yarrabilba's status as a rapidly growing, family-oriented suburb. This growth places increasing pressure on local infrastructure, particularly education, childcare, healthcare, and transport. Without proactive planning, the suburb risks overburdening its services and compromising long-term liveability.

Excerpt 2 demonstrates:

- an astute interpretation that identifies how the patterns, evident in the maps (Figures 7 and 9), represent the challenge of providing suitable aged care facilities for the ageing population in Victor Harbour (Figure 11)
- proficient data transformation into sophisticated maps.
- Note:** The characteristic/s identified may not be the only time the characteristic/s occurred throughout a response.

Excerpt 2

Figure 7: Map of elderly dependency ratio for each SA1 in the SA2 area of Victor Harbor (ABS, 2021e)

Figure 9: Map of the percentage of the population with a long-term health condition for each SA1 in the SA2 area of Victor Harbor (ABS, 2021e)


Attribution: Data from the Australian Bureau of Statistics (ABS). (2021e). Search Census Data. Available at: <https://abs.gov.au/census/find-census-data/search-by-area>. Licensed CC BY 4.0. OpenStreetMap images are licensed (inclusive of the ABS data) under the ODbL

3.5 Health and Aged-Care Priority Areas

From the correlation between long-term health conditions and elderly dependence, a map of areas of priority areas for health and aged care was created.

The northern and southern coastal region of Victor Harbor are high priority for health and aged care services due to higher proportion of elderly dependence and long-term health conditions (Figure 11). However, a central coastal area of Victor Harbor also shows high priority (Figure 11).

These areas greatly need aged-care facilities to support the higher numbers of elderly people aged and those with long-term health conditions who can no longer live independently and require ongoing care.

Figure 11: Health and aged-care priority map of Victor Harbor based on elderly dependence and long-term health conditions (ABS, 2021e)

Attribution: Data from the Australian Bureau of Statistics (ABS). (2021e). Search Census Data. Available at: <https://abs.gov.au/census/find-census-data/search-by-area>. Licensed CC BY 4.0. OpenStreetMap images are licensed (inclusive of the ABS data) under the ODbL

External assessment

External assessment (EA) is developed and marked by the QCAA. The external assessment for a subject is common to all schools and administered under the same conditions, at the same time, on the same day. The external assessment papers and the external assessment marking guide (EAMG) are published in the year after they are administered.

Examination — combination response (25%)

Assessment design

The assessment instruments for the General and AS were designed using the specifications, conditions and assessment objectives described in the summative external assessment section of the relevant syllabus. Each examination consisted of two sections consisting of five short response questions and one extended response question (42 marks).

Students were required to answer questions in response to stimulus for the short response questions and extended response question, and create a graph for the data transformation question. The stimulus consisted of a range of maps, graphs and data.

For the General syllabus, the examination assessed subject matter from Unit 4. Questions were derived from the context of Topic 2: Global population change.

For the AS, the examination assessed subject matter from AS Unit 2. Questions were derived from the context of Topic 2: Natural hazard zones.

Assessment decisions

Assessment decisions are made by markers by matching student responses to the EAMG.

Effective practices

Overall, students responded well when they:

- answered all parts of a question
- used examples and evidence to support explanations and analysis, when required by the question
- created a suitable graph to represent the data provided
- made inferences in the extended response question to explain a geographical challenge based on the relationships evident between multiple pieces of data.

Practices to strengthen

When preparing students for external assessment, it is recommended that teachers:

- provide opportunities for students to develop the analytical skills needed for the extended response. Instead of analysing each piece of stimulus in isolation, students should use multiple pieces of stimulus to make inferences about a geographical challenge. Their analysis should clearly show the relationships between the patterns and trends that represent the challenge

- emphasise the importance of carefully reading each question to determine the requirements of the response. For example, the extended response in the General examination required students to make generalisations about the impacts of the identified challenge on the *place* of destination
- provide opportunities for students to develop and use appropriate geographical terminology in their responses, including terminology to describe spatial patterns and explain geographical processes.

Additional advice

It is essential to consider the following key differences between the specifications in the 2019 and 2025 syllabuses:

- Questions aligned to the explaining objective will require explanations of geographical processes and interactions. These questions may take the form of 'What' questions and may not use stimulus.
- Stimulus will not be required for all short response questions. Students may be required to answer questions based on their understanding of the subject matter.
- To align with the revised criterion for Communicating, students will no longer be required to create a map or a graph.
- The extended response question will reflect the revised subject matter for Unit 4 Topic 2, which is no longer focused on a place in the developing world.
- Stimulus for the extended response will not be presented on an A3 sheet but will take the form of a stimulus booklet.

Samples

Short response

Question 2 (AS examination)

This question required students to analyse a complex piece of stimulus containing maps and graphs to explain the effect of predicted temperature increases on drought frequency in European regions and identify one impact for one region.

Effective student responses:

- answered both parts of the question
- provided an analysis linking exposure and frequency across the regions using evidence
- made a relevant inference about an impact for one region based on the analysis.

This excerpt has been included:

- to provide an example of an effective response that demonstrates all parts of the marking guide, including
 - accurate analysis referring to exposure and frequency
 - uses appropriate data to support the analysis
 - makes a relevant inference
 - identifies a relevant impact for one region.

Predicted temperature increase has a predominantly decreased frequency in continental areas, decreased frequency in Boreal areas, increased frequency in Atlantic areas, and increased frequency in Mediterranean areas. For the areas with an increased frequency, temperature has a higher effect on the percentage with the higher the temperature, the higher the predicted percentage increase (i.e. 1.5°C with $\sim 30\%$ predicted increase vs. 4°C with $\sim 91\%$ predicted increase for Atlantic areas). Whereas areas with a decrease in frequency have less change in % decrease in relation to temperature (i.e. Boreal areas with 1.5°C having $\sim 98\%$ predicted frequency decrease vs. 4°C also having $\sim 98\%$ freq. decrease). An impact that could be experienced for Mediterranean areas include susceptibility to floods ~~due~~ after periods of drought due to the dry-ness of the soil, after droughts the soil becomes so dry the water is unable to soak in, instead it just sits on top of the soil or runs-off, increasing likelihood of floods in some areas. This and agricultural unproductivity/unusable soil.

Question 2 (General examination)

This question required students to describe two spatial patterns evident in a graph showing common migration corridors, using examples from the graph. The second part of the question required students to identify a factor that contributed to movement in one corridor.

Effective student responses:

- answered all parts of the question
- used appropriate geographical terminology to describe the spatial patterns
- used relevant examples to support the description.

This excerpt has been included:

- to provide an example of an effective response that demonstrates all parts of the marking guide, including
 - accurate description of two spatial patterns
 - uses relevant examples for both patterns identified
 - identifies a relevant factor to explain movement in one corridor.

Neighbouring countries ~~have~~ and ^{more} low-socio economic countries (LEDCs) to ~~more~~ neighbouring socio-economic countries (MEDCs) are common and predominant migration corridors. For example, neighbouring countries like Mexico and USA and Bangladesh to India are common types of migration corridors, with Mexico to USA especially having around 10 million migrants alone in 2020. Additionally, LEDCs like the Philippines, Indonesia, and Algeria travel to MEDCs such as USA, Saudi Arabia, and France. Specifically, a factor for LEDC to MEDC migration corridors is ~~geography, as well as~~ ^{lifestyle factors} such as job opportunities which are more favoured or better in ~~the richer~~ ^{wealthier} countries. Thus, they migrate for better income and quality of life.

Extended response

Question 6 (AS examination)

This question required students to analyse maps and graphs to make inferences about hurricane risk in the Western Atlantic hazard zone and make generalisations about the impacts of a specific hurricane in Florida and Cuba.

Effective student responses:

- provided an analysis that identified complex relationships between pieces of data to make inferences about the risk of hurricanes in the Western Pacific, e.g. places that experienced the greatest flooding due to the relationship between high storm surge caused by the Category 4 winds combined with the places being in the area of greatest rainfall
- used comprehensive data in their analysis to support inferences
- applied understanding of the analysis to make generalisations about the impacts of Hurricane Ian on both Florida and Cuba
- were written in paragraphs using appropriate geographical terminology and the conventions of written communication.

This excerpt has been included:

- to demonstrate an analysis that makes inferences about risk by identifying the relationship between hazard and vulnerability data for both Florida and Cuba
- because it uses appropriate evidence from the stimulus.

On the Southwest

coast of Cuba and South West coast of Florida, storm surges hit 1-3m above sea level. With this, more people in Florida are exposed to the ~~the~~ hazards of flooding and inundation due to the high population density along the coastline.

In Cuba, people were less exposed to the hurricane^(less urban areas) but were at greater vulnerability. Stimulus 8 shows the relationship between ~~income~~ income per capita and country where Cuba (91PC) ~~income~~ (651PC) earns approx. 55 thousand USD/year less than Florida¹. This means Cuba would have less appropriately built houses, less services and facilities, or less resources available in an emergency. However, as Florida is assumed to have more buildings and resources it means the region is also at greater risk of more damages. This is supported by ^{stimulus 7} which shows Florida had a significantly higher economic loss, 800~~0~~ million ~~0~~ USD greater than Cuba. Also, Florida had a greater agricultural land lost (1.9 million greater) than Cuba which is congruent with Stimulus 1 and 2 which shows the hurricane path passing over majority of Florida's agricultural and wetland regions.

Question 6 (AS examination)

This question required students to analyse maps and graphs to make inferences about a geographical challenge arising from population change in Uganda as a result of forced migration. Students were required to make generalisations about the impacts of the challenge on the place of destination, the Bidibidi refugee camp in the Yumbe district of Uganda.

Effective student responses:

- provided an analysis that identified complex relationships between pieces of data to make inferences about the cause of a geographical problem evident in Uganda due to the expansion of the Bidibidi refugee camp over time. For example, although the refugee population declined over time the refugee settlements increased in area more than the other built-up areas; therefore the need for building materials and fuel wood was responsible for the evident impacts to land cover change
- applied their understanding of the analysis to make generalisations about the impact of land degradation for the place of destination, the Yumbe district
- wrote in paragraphs using appropriate geological terminology and the conventions of written communication.

This excerpt has been included:

- to demonstrate an analysis that makes inferences about the expansion of refugee settlements and the use of natural resources to support the refugee populations need for shelter
- because the generalisations are derived from an understanding of the causes of the geographical challenge identified in the analysis, competition for resources.

The impact of this is that conflict and competition over resources are exacerbated, as hosts recognise ~~may feel~~ that migrants are taking their resources. The want for livelihood in refugees further indicate that migrants plan on staying permanently, adding another aspect of competition.

Finally, migrants expend natural resources, creating negative environmental impacts. Stim 2 shows the ~~spatial~~ spatial land use change from 2015 to 2020. Since 2015, ~~new~~ refugee settlements have ~~expanded~~ overtaken mainly on built up and urbanised land. However, it has begun to encroach onto natural grassland, woodland, and subsistence farmland from the west. It has also depleted tree plantations in the ~~the~~ north and central parts of the Yumbe.

Lumber resources

are depleted, as 99% of refugee households have to construct their shelter, and ~~and~~ 87% of such construction materials are natural materials from the environment. ~~are adding~~ (stim7). In addition, 91% of refugees are provided ~~with~~ access to land by the government. ~~with~~ These lands are likely used for housing rather than agriculture, decreasing national productivity while not producing food. ~~thus~~ (stim4) The exploitation and use of natural resources in the Yumbe district is not sustainable, as demonstrated by Stim 8. At the current rate at which wood stock is used, the Yumbe district's natural resources are running on a deficit of about 50 000 tonnes a year. Compounded with the continued population growth and urbanisation that ~~is~~ decreases the ~~rate of~~ regeneration rate of natural resources, it can be observed that ~~migrant~~ refugees in Uganda cause significant environmental damage.

In conclusion, the inflow of migrants to Uganda straining already scarce resources, creates conflict between migrants and refugees, and causes significant environmental damage.