Scope and sequence identifies what should be taught and what is important for students to have opportunities to learn. It describes the knowledge that students need for ongoing learning in Mathematics. This knowledge is presented as Concepts and facts and Procedures.
The scope and sequence:

- is provided for each year of schooling
- provides additional detail in each Organiser
- informs the focus of Mathematics in assessment

Prep	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
Concepts and facts - Straight and curved lines in shapes and objects, e.g. curved line on a ball and circle and square	Concepts and facts - 2D shapes: circle, triangle, . rectangle (including squares) prism, sphere, cone, pyramid cylinder - Simple properties of 2D shapes -straight and curved lines and surfaces -number of sides -number of corners - Simple properties of 3D objects, e.g. shapes of faces	Concepts and facts - Families of shapes - Geometric properties of shapes -angles in turns -depth in 3D objects - Symmetry: a line or plane dividing images into two congruent shapes folded and cut pictures -flips, slides, turns	Concepts and facts - 2D shapes names: square, rectangle, triangle, and circle - 3D objects: prism, pyramid, cone, cylinder and sphere - Geometric properties - angle, line of symmetry	Concepts and facts - Quadrilaterals: - parallelograms - rectangles - rhombuses (including diamonds) - Nets of prisms, pyramids, - cylinders, cones - Geometric properties of shapes: -lines (horizontal, vertical, oblique, parallel and non-parallel) -equal sides, faces - angles (straight 180°, right 90°) - Symmetrical, asymmetrical shapes - Tessellating properties of - Enlargements and reductions	Concepts and facts - Polygons: a plane figure with three or more sides, Ton-polygons -right-angled - isosceles - scalene - Geometric properties of shapes -vertex, edge, base -parallel sides, faces, lines - perpendicular sides and lines - angles (acute, obtuse, straight, - reflex) - Prediction of shapes from nets using visualisations - Symmetry Tessellations involving transformations	Concepts and facts - Regular and irregular polygons: -triangles -quadrilaterals - pentagons - hexagons - dodecagons - Specialised names of prisms and pyramids -by their base shape, e.g. square-based pyramids, hexagonal prism - Sphere, hemisphere - Geometric properties -equal base angles, diagonals of a polygon - Symmetry - lines - planes -rotational and angle of rotation	Concepts and facts - 2 D shapes: circles (including concentric, non-polygons, e.g. ellipse) - 3D objects: plans, nets, - Part of 2 D shapes, e.g. semicircle, quadrant Composite shapes, e.g. 4-, 5-, and 6 -pointed stars are made of a number of distinct Sh: Geometric properties: -sum of internal angles - circles (radius, diameter, centre, circumference, chord, tangent) - Symmetry - lines of - points of -planes of rotation) - Congruent shapes have the same shape and size - Transformations: reflection, rotation and translation - Lines	Concepts and facts Cross-sections of prisms and pyramids parallel or - Shapes produced by repeating regular geometric shapes (Platonic solids), e.g. cube, tetrahedron, octahedron, dodecahedron, icosahedro - Shapes embedded within other shapes - Parts of 3D objects, e.g. truncated cone - Composite 3D shapes , e.g. octahedron (two squarebased pyramids) - Line segment and midpoint - Angles: formed by intersecting lines, e.g opposite, supplementary, complementary angles external angles of (triang of of (triangles, polygons) Congruence - Perspective drawings	Concepts and facts - Complex geometric shapes: -curved surfaces - compound shapes as objects combined to make a single object, e.g. embedded shapes - Cross sections of shapes - partitions of circles, e.g. sectors, segments, annulus - Specifications - boundary, angle and scale - Sequences of transformations - Proofs: - angle properties associated with parallel, perpendicular and transverse lines and polygons e.g. when two straight lines intersect, opposite angles are equal -sum of interior angles
Procedures - Classification by -shape name, e.g. circle -single attribute, e.g. things that roll	Procedures - Classification of shapes using one or two defining features - Comparison of shapes: -defining features - common features -different features	Procedures - Classification using geometric - names and defining properties - Comparison of: det nets of a cube - of 2 D shapes and 3 D objects, connections and differences - Folded or cut images - Partition of 2D shapes, e.g. triangles within a square, rectangle rectangle	Procedures - Classification using geometric names and defining properties - Comparison of: -shapes for one line of symmetry - angles, e.g. bigger than, smaller than	Procedures - Classification using geometric names and defining properties - Relationship between symmetry - and tilp - Preservation of symmetry in flips, slides, and turns of objects	Procedures - Classification using geometric properties - Shapes within shapes - Angles within angles	Procedures - Estimation of angles	Procedures - Classification using geometric conventions, e.g. length, angle size, relationships between faces - Comparison of shapes by superimposing them through a sequence of transformations - Connections between transformations, tessellations of suitable shapes in the plane and symmetry	Procedures Constructions using geometric tools for perpendicular lines, 90° angles, 60° angles, and to bisect an angle Composite constructions based on known properties, e.g. construct a rhombus given lengths of two diagonals Link symmetry, congruence, similarity of shapes with transformations, tessellations in the planes and on surfaces and	Procedures - Construction and manipulation of complex geometric shapes, e.g. soccer ball from net of stitching pattern involving tessellations of hexagons and pentagons - Construction from isometric drawings - Comparison of geometric properties of families of shapes for congruence or similarity
- Concrete materials: - computers -manipulative materials (familiar - shapes and objects) - Verbal: - everyday language: straight sides, curved lines, straight lines - Written: - straight and curved lines within drawings	- Concrete materials: - computers and other electronic devices - manipulative materials - everyday examples of 3D objects, e.g. ice-cream cones, balls, die, -everyday - everyday examples of 2D shapes, e.g. a window in a drawing of a house -3D object constructions - puzzles -descriptions of shapes -mathematical language: names of 2D shapes - Written: - sketches of 2D shapes and 3D objects from different viewpoints orientations	- Concrete materials: - computers and other electronic devices - manipul -manipulative materials (3D objects) -ruler for drawing straight lines - Verbal: - defining features of families of 2D shapes and 3D objects -3D objects: shape and number of -2 D shapes: -2D shapes: number of sides, - commor corners shapes , haracteristics of 2 D shapes, e.g. length, width -common characteristics of 3 D objects, e.g. length, width, depth, height - Written: - drawings and electronic representations of shapes in different orientations and turns	- Concrete materials: - computers and other electronic devices - manipulative materials (puzzles) -mirrors -construction of 2D shapes and -repeating patterns - Verbal: - mathematical language: angle, line of symmetry -2D shapes: number of sides, number of angles - Written: drawings and electronic representations of 2D and 3D objects	- Concrete materials - computers and other electronic devices -manipulative materials (models of 3D objects) - mirrors -descriptions of features using appropriate spatial language and families of shapes - Written: -conventions for labelling shapes and lines -arrows to identify parallel lines - dotted lines to represent hidden lines in 3D objects	- Concrete materials: - computers and other electronic devices -manipulative materials - Verbal: objects -descriptions of features and broad family groups - Written: - symbols for angles -different viewpoints and orientations onventions for labelling shapes and angles - letters for naming 2D shapes (ABC ...) marks to identify equal sides of shapes, equal angles, and right angles, - patterns -tessellations	- Concrete materials computers and other electronic devices - manipulative materials - pair of compasses and straightedge protractor - Verbal: -mathematical language: congruence - Written: -symbolic: congruent (\cong) -simple compass constructions, e.g. isosceles triangle and angles and angles segments and ang on segments and angles	- Concrete materials: - computers and other electronic devices - manipul -manipulative materials, e.g. multi-link cubes - mirrors - geometric drawing tools - geometry software - Verbal: - descriptions of symmetry and - mathematical lin pattern congruent, non-congruent shapes, properties of shapes - Written: - accurate drawings and using geometric conventions, tools and technologies -mosaic patterns from plans drawn to scale -plans, nets, isometric diagrams and grid drawings - drawings of 3D objects and composite shapes from orientations	- Concrete materials: - computers and other electronic - manipula -manipulative materials - mirrors - geometric drawing tools - cross-sections - Verbal: -sum of internal angles - Writtal proofs - Written: -sketches sketches, drawings or electronic images of cross sections - compass construction to bisect a line segment	- Concrete materials: - computers and other electronic devices - manipul - manipulative materials -plans -nets -descriptions of complex geometric shapes using geometric conventions and rhombus bisect each other at right angles - deductions supported by proofs, e.g. proof - sketches, accurate drawings or electronic images of complex geometric shapes from specifications and with geometric conventions, e.g. symbols to indicate parallel lines, perpendicula lines and congruent lines

scope and sequence Mathematics - Years 1 to 9 space

Scope and sequence identifies what should be taught and what is important for students to have opportunities to learn. It describes the knowledge that students need for ongoing learning in Mathematics. This knowledge is presented as Concepts and facts and Procedures.
The scope and sequence:

- is provided for each year of schooling
- provides additional detail in each Organtial Learning
- informs the focus of Mathematics in assessment

Prep	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
- Visual -photographs and drawings of familiar shapes and objects "mind pictures" of different shapes - Positions and their opposites in - immediate environment objects objects	- Visual: - folding -joining halves - shapes within pictures - illustrations "mind pictures"' of different shapes - Turrs change direction Non-verbal information, reasure maps from familiar board or electronic games board or electronic games	- Visual - paper-folding -different orientations and viewpoints - 'mind pictures' of different viewpoints of shapes, and movement of shapes Left and right turns change direction - Estimates of informal -steps - grid spaces	- Visual: partial 2D shapes and 3D objects and different orientations - "mind pictures" of different viewpoints of shapes, and movement of shapes Relative size within maps Turns: quarter, half, three-quarter and full, more than clockwise, anticlockwise Estimates of informal measurements in movements: paces -grid spaces	- Visual: enlargements and reductions of shapes transformations of 2D shapes - paper-folding techniques for symmetry "mind pictures" of different viewpoints of shapes, and movement of shapes Directional north ($\uparrow \mathrm{N}$) - Mapping conventions - symbols - alphanumeric grids		- Visual: tessellations using iterative single transformations isometric view - Distance between locations - Angle as a change in direction - Mapping conventions: grid referen poles, key lines of reference on globe and flat map of earth, e.g. equator, prime meridian, international date line - coordinates (S), east (E) west (W)), south (S), east (E), west (W), north- east (NE), south-east (SE), north-west (NW), south-west (SW) -scal - Basic orienteering conventions	- Visual -lines of symmetry, e.g. the plane containing the equator on a globe - origami design, paper-folding - Mapping conventions: coordinates -scale - scale - Eight compass points: $\mathrm{N}, \mathrm{S}, \mathrm{E}$, W, NE, SE, NW, SW	- Visual: 3D objects from different viewpoints (nets, isometric location of viewer, e.g. top, side front) -perspective: one-point, two-points - Distance between grid references - Mapping conventions - ratio scale on maps $(1: 250)$ grid references - longitud - longitude	- Visual: - isometric and perspective drawings - Bearings in whole degrees - Mapping conventions: -cale -coordinates - bearings -angles -keys -annotations
Procedures - Position of self in relation to other objects, e.g. on the chair, under the roof, behind Lachlan and in front of the teacher	Procedures - "Mind pictures" to assist plans for movement	Procedures - Position relative to known landmarks - "Mind pictures" to assist plans for movement	Procedures - Comparison of sketched maps and commercial maps of the same environment	Procedures - Connection between the amount of turn and change in direction from north, e.g. half a turn from facing north is facing south	Procedures - Connection between four compass points and the amount of turn or angle - Estimation of distances in relation to scale	Procedures - Connection between eight compass points and the amount of turn or angle - Estimation of distances	Procedures - Connection between eight compass points and the amount of turn - Estimation of distances	Procedures - Interpretations of maps using scale, coordinates, features distance and orientations - Comparison of alternative pathways between locations - Estimation of distances	Procedures - Relationship between flat maps and globe - Measurement of bearings measured clockwise from north - Estimation of bearings in degrees
- Concrete materials: -computers - manipulative materials - familiar e: - directions using position language -everyday language: here, there, on, off, forward, backward, on, under, in front of, behind , insid under, in front of, behind, inside, outside, in, out - Written: -simple line drawings representing a map - Visual: - photographic of familiar environments	- Concrete materials: -computers and other electronic devices -manipulative materials -community environments - Verbal: - feedback on and improvement of - directions everyday language: - uper, under - left, right - forwards, backwards - sideways - on below - beside - near - before, after - Written: - full, half and quarter turns -signs and symbols - simple line drawings representing a map - Visual: electronic maps and plans	- Concrete materials: - computers and other electronic devices -manipulative materials - grids - Verbal: - explanations of the construction and interpretation of directions - everyday language: left/right of, long way from, close to - Written: - simple sketches of maps and plans on grids - Visual: -electronic maps including grids and plans	- Concrete materials: -computers and other electronic devices -manipulative materials -maps of familiar environments - grids - Verbal: -informal distances in directions -descriptive directions -factors assisting precision and interpretation of directions - Written: -sketches of simple maps and plans on grids - Visual: electronic maps including grids and plans	- Concrete materials: - computers and other electronic devices -manipulative materials treasure map - room plan -turns in directions - Written: drawings and electronic of maps from different viewpoints, e.g. from above as in "bird's-eye- view" with - Visual: -electronic maps and plans	- Concrete materials: - Computers and other electronic devices - maps and materials -maps and plans of schools and local area for interpretation - Verbal: -spatial language to specify directions - manual or electronic maps and plans with conventions and straightforward scale, e.g. legend and symbols for direction -electronic maps and plans	- Concrete materials: -computers and other electronic devices -manipulative materials -commercial maps and plans - globe - Verbal: -directions to specific locations -calculation of distance between grid reference points - Written: -manual or electronic maps and plans with conventions - Visual: - simple orienteering maps and directions	- Concrete materials: -computers and other electronic devices -manipulative materials -commercial maps and globe - shopping centre plans - Verbal: -directions for specific locations and movement from one location to another using flat maps and the globe -calculation of distance between locations -manual or electronic maps and plans with conventions and scale Visual: - other p s and plans	- Concrete materials: -computers and other electronic devices - manipulative materials - flat maps, topographical maps and globes -precise directions for specific locations and movement from one location to another critical analysis of alternative pathways and distances between Written: -calculation of enlargement, reductions using scale - manual or electronic maps and plans with conventions and scale, e.g. floor plans with scale - calculations of distances between locations - Visual: -commercial floor plans	scale - Concrete materials: - computers and other electronic devices -manipulative materials -flat maps including world, atlas, street directory and orthophoto - amusement park maps and - Vocation guides -specify locations and descriptions of spatial relationships - manual/electronic maps and plans with conventions to represent location - distance and orientation on grids - plans and elevations with scale - Visual: -orienteering maps and directions

