Scope and sequence identifies what should be taught and what is important for students to have opportunities to learn. It describes the knowledge that students need for ongoing learning in Mathematics.
This knowledge is presented as Concepts and facts and Procedures.

- is provided for each year of schooling
- should be used together with the Essential Learnings
- provides additional detail in each Organise
- informs the focus of Mathematics in assessment

Prep	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9
Concepts and facts - Own paterns - Repeating patterns have a discernible unit of repetition - Non-patterns - "Balance" on scales - Sameness of collections (equivalence)	Concepts and facts - Simple rules for repeating patterns $(\otimes \mathbb{C} \otimes \mathbb{C} \otimes \mathbb{C})$) and increasing patterns - Inverse of the rule, e.g. subtraction undoes addition - Equivalence collections	Concepts and facts - Repeating patterns - Increasing and decreasing patterns: skip counting - Missinged valueatition, or subtraction - Missing value pattern of $2,3,4$, or 5 objects (repeating patterns) - based on addition or subtraction (increasing and decreasing patterns) - Equivalent collections: different combinations and arrangements for the same number value, e.g. 5 and - Non-patterns, patterns with errors	Concepts and facts - Number patterns and sequences: repetition, order regular increases and decreases - rimple relationships between objects and numbers: order (the second value depends on, is a function of the first value) - arrangement - equivalence	Concepts and facts - Space and number pattern rules, - including patterns with decimals including equivalence - Arithmetic properties: - commutative - associative - Inverse operations	Concepts and facts - Number patern rules using the four - Preations $\begin{aligned} & \text { Prions of change using }\end{aligned}$ relationshis, e.g. withit the previous - Germ as in the Fibonacaci sequence - Generalisations built on: commutative property distributive property inverse operations	Concepts and facts - Equations using addition, - Subtraction - order of operations: the appropiate sequence of operations used in calculations - calculations : Orderefo dairs (discrete data) - Relationships: - variables - simple equations	Concepts and facts - Equations, expressions and formulae using addition, subtraction and multiplication - Ordered pairs (continuous data) - Relationships: - variables	Concepts and facts - Equations - Algebraic expressions involving the - four operations - Variables (discrete and continuous) - and constants : Ordereded pairs (four quadrants) - Linear and non-linear equations related to real-life problems	Concepts and facts - Algebraic expressions involving reciprocals, whole number powers and square roots Algebraic relationships modelled using integer, decimal and fraction values of variables - Functions Simple simultaneous linear and non-linear equations
Procedures - Comparison of collections: - quantity, size - Sorting	Procedures - Order - Comparison of collections: - same as - - different Translation of patterns: actions to objects objects - Estimation - Mental strategies: - guess and check	Procedures - Order Comparison of collections: balance equal to same - different from - Translation of patterns: objects to numbers Elements or terms of a pattern and - Estimation in the pattern Estimation - guess and chies: - guess and check between addition and subtraction)	edures - Equations: - equivalence - equivalence - Estimation - Mental strategies: - guess and check using addition - backtracking	Procedures - Comparison of data sets - Estimation - Mental strategies: - guess and check - inverse of operations (addition and subtraction, multiplication backtracking	Procedures - Comparison of relationship in e.g. changes in perimeter with changes in the area - Estimation - Mental strategies: - guess and check inverse of operations (addition and subtraction, multiplication and division) simplify, manipulate and is the same as $60 \div 3$ plus $12 \div 3$ - backtracking	Procedures - Comparisons of simple algebraic expressions and relationships, cost equals number $\times 2$ - Estimation Mental and written strategies: - guess and check - backtracking	Procedures - Comparisons of simple algebraic expressions and relationships, $4 \mathrm{~km} / \mathrm{h}$ - Estimation Mental and written strategies: - guess and check - commutative property - distributive property - inverse property	Procedures - Comparison of linear and non-linear - Graphs - Conservation of equivalence - Estimation Mental, electronic and written strategies: - for manipulation of expressions and equations - guess and check - associative property - inverse property - substitution - simplifying - expanding	Procedures - Conservation of equivalence Estimation Mental, electronic and written strategies: - for manipulation and rearrangement of expressions and equations - commutative property - associative property - inverse property - substitution $p=3 q-2$ to obtain $3 q=(p+2)$
- Concrete materials: - computers manipulative materials (everyday objects, balance scales) - $\mathrm{-}$ actions - increasing and decreasing sequences in songs and rhymes - predicitions of change - pattern rules - descriptions of same collections - Written: - Viscording patterns, e.g. drawings - visual: - photographic records of patterns	- Concrete materials computers and other electronic devices manipulative materials (everyday objects, balance - Verbal: - same as in groups - equal to a group - counting pa - Written: - symbolic: equals (=) - groups of repeating elements - Visual: - photographic records of patterns	Concrete materials: computers and other electronic manipulative materials (everyday objects, balance scales) actions, sounds function machine (input-output) to describe a rule - Verbal: simple rules for increasing, decreasing patterns and repeating patterns number sentences predictions and statements the use of an element in patterns, e.g. $12^{\text {th }}$ element in a red, green e.g. 12 explanations of reasoning, calculation strategies and mathematical language: equal to, same as, not equal to, different from, missing addend - Written: - symbols - input-output table - Vi Visual: calculator constant function - hundred board - picture graphs	Concrete materials. computers and other electronic devices objects) objects) materials Verbal: descriptions of patterns, rules and relationships aneralis of equivalence generalisations about changes between elements and - explanations of reasoning calculation strategies and reasonableness of solutions - Written: symbolic: equals (=), does not equal (\neq), unknowns (shapes, boxes, question marks, spaces, lines) lines) table of in words table of values - Visual: - pictorial materials calculators - hundred board picture and bar graphs lists - tables	- Concrete materials: devices devices - Verbal: - rules for spatial and number patterns explanations of reasoning, calculation strategies and reasonableness of solutions - mathematical language: same, equal, greater than, less than - Written: symbolic: greater than (>), less than (<), unknowns (shapes, boxes, lines) - equations - lists - tables - picture - - picture and bar graphs - pictorial materials - graphs - lists	- Concrete materials devices devices - Verbal: Verbal: positions in patterns from rules, e.g. $20^{\text {th }}$ term in the pattern 3,6 , $9,12 \ldots$ will be 60 as $20 \times 3=60$ - explanations of reasoning, reasonableness of solutions - Written: - symbolic: $x / \div,+/-$ - equations - lists - lists - line graphs - graphs (manual and electronic) Visual: - pictorial materials - graphs - lists - tables	- Concrete materials: computers and other electronic devices - manipulative materials Verbal: strategies for calculations - descriptions of rules - predictions calculation strategies and, reasonableness of solutions mathematical language: discrete, continuous, trends - Written: symbols and letters words ordered pairs - graphs (manual and electronic) - Visual: - tables of values - commercial graphs arrow diagrams to sequence procedures	Concrete materials: devices devices - Verbal: strategies for calculations, and to maintain equivalence descriptions of patterns in words, explanations of generalisations, e.g. why $(2 \times 6)+(3 \times 6)=5 \times 6$ generalises to $(2 \times n)+(3 \times n)=$ predictions justifications of reasoning, calculation strategies and reasonableness of solutions - Written: symbols and letters tables ordered pairs - graphs (manual and electronic) calculations - diagrams and arrow diagrams - tables of values other people's graphs	- Concrete materials computers and other electronic devices - - manipulative materials Verbal: strategies for calculations, and to maintain equivalence - predictions and generalisations calculation strategies and, reasonableness of solutions mathematical language: variable, dependent, independent, trend - Written: - symbols and letters - models - tables - ordered pairs - graphs (manual and electronic) calculations different representations of linear - Visual: - tables of values - commercial graphs	- Concrete materials: computers and other electronic devices - strategies for calculations, and to maintain equivalence - justifications of reasoning calculation strategies and reasonableness of solutions effect of varying values - reference to gradients and y axis - rule of the function Written: symbols and letters, e.g. $y=m x+c$ tables simple of values for linear and simple non-linear functions - ordered pairs - graphs (manual and electronic) calculations esentations of linear and non-linear equivalences Visual: commercial graphs

