Square numbers

The Year 6 Mathematics Queensland Comparable Assessment Task (QCAT) investigates specific properties of square numbers. This document provides background information and advice for teachers to understand the relationships between Number, Square number and the Difference between consecutive pairs of square numbers, that students will be investigating in Question 2 (page 5, Student booklet).

Identifying square numbers

Square numbers are generated by multiplying a number by itself.
Square numbers are those that can be represented by a square array of dots.

For example:
1 is a square number because $1 \times 1=1$ and this can be represented as a square array of dots.
4 is a square number because $2 \times 2=4$ and this can be represented as a square array of dots.

Position on a multiplication facts table

Square numbers occupy the spaces from top left to bottom right diagonal in the multiplication table shown below.

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	2	12	15	18	21	24	27	30
4	8	12		6	20	24	28	32	36
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	86	42	48	54	60
7	14	21	28	35	42	4	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	8	90
10	20	30	40	50	60	70	80	90	100

Square number patterns

Using different colours to shade adjacent squares highlights the amount of extra squares required to build the next square number. The amount of Extra squares shaded represents the Difference between consecutive pairs.

Number

1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100

Extra squares
shaded
-
3
5
7
9
11
13
15
17
19

Generating the square number

1
$1^{2}+3=2^{2}$
$2^{2}+5=3^{2}$
$3^{2}+7=4^{2}$
$4^{2}+9=5^{2}$
$5^{2}+11=6^{2}$
$6^{2}+13=7^{2}$
$7^{2}+15=8^{2}$
$8^{2}+17=9^{2}$
$9^{2}+19=10^{2}$

Another way to represent this diagrammatically is:

Students can describe the pattern created by calculating the Difference between consecutive pairs as the sequence of odd numbers.

Number	Difference between consecutive pairs	Generating the square number
1	1	1
2	3	$1+3=2^{2}$
3	5	$(1+3)+5=3^{2}$
4	7	$(1+3+5)+7=4^{2}$
5	9	$(1+3+5+7)+9=5^{2}$
6	11	$(1+3+5+7+9)+11=6^{2}$
7	15	$(1+3+5+7+9+11)+13=7^{2}$
8	17	$(1+3+5+7+9+11+13)+15=8^{2}$
9	19	$(1+3+5+7+9+11+13+15)+17=9^{2}$
10	$13+5+7+9+11+13+15+17)+19=10^{2}$	

A way to represent this diagrammatically is:

Students can also describe the pattern created by calculating the Difference between consecutive pairs as increasing by two.

Number	Difference between consecutive pairs	Generating the square number
1	1	1
2	$3=1+2$	$1^{2}+(1+2)=2^{2}$
3	$5=3+2$	$2^{2}+(3+2)=3^{2}$
4	$7=5+2$	$3^{2}+(5+2)=4^{2}$
5	$9=7+2$	$4^{2}+(7+2)=5^{2}$
6	$11=9+2$	$5^{2}+(9+2)=6^{2}$
7	$13=11+2$	$6^{2}+(11+2)=7^{2}$
8	$15=13+2$	$7^{2}+(13+2)=8^{2}$
9	$17=15+2$	$8^{2}+(15+2)=9^{2}$
10	$19=17+2$	$9^{2}+(17+2)=10^{2}$

This pattern can be illustrated visually using the reverse L-shape as shown below. The next square number is generated by adding the same number of squares from the previous reverse L-shape and then two more at the ends, shown here in black.

Students can describe the relationship between Number and Difference between consecutive pairs as the sum of consecutive numbers.

Number	Difference between consecutive pairs	Generating the square number
1	1	1
2	$3=1+2$	$1^{2}+(1+2)=2^{2}$
3	$5=2+3$	$2^{2}+(2+3)=3^{2}$
4	$7=3+4$	$3^{2}+(3+4)=4^{2}$
5	$9=4+5$	$4^{2}+(4+5)=5^{2}$
6	$11=5+6$	$5^{2}+(5+6)=6^{2}$
7	$13=6+7$	$6^{2}+(6+7)=7^{2}$
8	$15=7+8$	$7^{2}+(7+8)=8^{2}$
9	$17=8+9$	$8^{2}+(8+9)=9^{2}$
10	$19=9+10$	$9^{2}+(9+10)=10^{2}$

A way to represent this diagrammatically is:

Students can also describe the relationship between Number and Difference between consecutive pairs as the algebraic relationship, $2 x+1$.

Number	Difference between consecutive pairs	Generating the square number
1	1	1
2	$3=2 \times 1+1$	$1^{2}+(2 \times 1+1)=2^{2}$
3	$5=2 \times 2+1$	$2^{2}+(2 \times 2+1)=3^{2}$
4	$7=2 \times 3+1$	$3^{2}+(2 \times 3+1)=4^{2}$
5	$9=2 \times 4+1$	$4^{2}+(2 \times 4+1)=5^{2}$
6	$11=2 \times 5+1$	$5^{2}+(2 \times 5+1)=6^{2}$
7	$13=2 \times 6+1$	$6^{2}+(2 \times 6+1)=7^{2}$
8	$15=2 \times 7+1$	$7^{2}+(2 \times 7+1)=8^{2}$
9	$17=2 \times 8+1$	$8^{2}+(2 \times 8+1)=9^{2}$
10	$19=2 \times 9+1$	$9^{2}+(2 \times 9+1)=10^{2}$

