Year 10 standard elaborations — Australian Curriculum: Mathematics

Purpose

The standard elaborations (SEs) provide additional clarity when using the Australian Curriculum achievement standard to make judgments on a five-point scale. They promote and support:

- aligning curriculum, assessment and reporting, connecting curriculum and evidence in assessment, so that what is assessed relates directly to what students have had the opportunity to learn
- continuing skill development from one year of schooling to another
- making judgments on a five-point scale based on evidence of learning in a folio of student work
- developing task-specific standards and grading guides.

Structure

The SEs are developed using the Australian Curriculum achievement standard. In Mathematics Years 7 to 10, the SEs have been organised using the proficiency strands: understanding, fluency, problem solving and reasoning. Performance is frequently represented in terms of complexity and familiarity of the standard being assessed. Across the elaborations this is described according to:

- A — complex unfamiliar
- B — complex familiar
- C — simple familiar
- D — some simple familiar
- E — partial, isolated and obvious

The Mathematics achievement standard describes the learning expected of students at each year level. Teachers use the achievement standard during and at the end of a period of teaching to make on-balance judgments about the quality of learning students demonstrate.

In Queensland the achievement standard represents the C standard — a sound level of knowledge and understanding of the content, and application of skills. The SEs are presented in a matrix. The discernible differences or degrees of quality associated with the five-point scale are highlighted to identify the characteristics of student work on which teacher judgments are made. Terms are described in the Notes section following the matrix.

Year 10 Australian Curriculum: Mathematics achievement standard

By the end of Year 10, students recognise the connection between simple and compound interest. They solve problems involving linear equations and inequalities. They make the connections between algebraic and graphical representations of relations. Students solve problems relating to composite solids. They recognise the relationships between parallel and perpendicular lines. Students apply deductive reasoning to proofs and numerical exercises involving plane shapes. They compare data sets by referring to the shapes of the various data displays. They describe bivariate data where the independent variable is time. Students describe statistical relationships between two continuous variables. They evaluate statistical reports. Students expand binomial expressions and factorise monic quadratic expressions. They find unknown values after substitution into formulas. They perform the four operations with simple algebraic fractions. Students solve simple quadratic equations and pairs of simultaneous equations. They use triangle and angle properties to prove congruence and similarity. Students use trigonometry to calculate unknown angles in right-angled triangles. Students list outcomes for multi-step chance experiments and assign probabilities for these experiments. They calculate quartiles and inter-quartile ranges.

Year 10 Mathematics standard elaborations

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual understanding</td>
<td>connection and description of mathematical concepts and relationships in complex unfamiliar situations</td>
<td>connection and description of mathematical concepts and relationships in complex familiar situations</td>
<td>recognition and identification of mathematical concepts and relationships in simple familiar situations</td>
<td>some identification of simple mathematical concepts</td>
</tr>
<tr>
<td>Procedural fluency</td>
<td>recall and use of facts, definitions, technologies and procedures to find solutions in complex unfamiliar situations</td>
<td>recall and use of facts, definitions, technologies and procedures to find solutions in complex familiar situations</td>
<td>recall and use of facts, definitions, technologies and procedures to find solutions in simple familiar situations</td>
<td>some recall and use of facts, definitions, technologies and simple procedures</td>
</tr>
<tr>
<td>Mathematical language and symbols</td>
<td>effective and clear use of appropriate mathematical terminology, diagrams, conventions and symbols</td>
<td>consistent use of appropriate mathematical terminology, diagrams, conventions and symbols</td>
<td>use of appropriate mathematical terminology, diagrams, conventions and symbols</td>
<td>use of aspects of mathematical terminology, diagrams and symbols</td>
</tr>
<tr>
<td>Problem-solving and reasoning</td>
<td>Mathematical modelling</td>
<td>Reasoning and justification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem-solving approaches</td>
<td>Mathematical models and representations in complex unfamiliar situations</td>
<td>mathematical thinking and reasoning, including logical justification of choices made, evaluation of strategies used, proofs formulated and conclusions reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>systematic application of relevant problem-solving approaches to investigate complex unfamiliar situations</td>
<td>development of mathematical models and representations in complex unfamiliar situations</td>
<td>clear explanation of mathematical thinking and reasoning, including reasons for choices made, strategies used, proofs formulated and conclusions reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>application of relevant problem-solving approaches to investigate complex familiar situations</td>
<td>development of mathematical models and representations in complex familiar situations</td>
<td>explanation of mathematical thinking and reasoning, including discussion of choices made, strategies used, proofs formulated and conclusions reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>application of problem-solving approaches to investigate simple familiar situations</td>
<td>development of mathematical models and representations in simple familiar situations</td>
<td>description of mathematical thinking and reasoning, including discussion of choices made, strategies used, proofs formulated and conclusions reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>some selection and application of problem-solving approaches in simple familiar situations</td>
<td>statements about simple mathematical models and representations</td>
<td>statements about choices made, strategies used and conclusions reached</td>
<td></td>
<td></td>
</tr>
<tr>
<td>partial selection of problem-solving approaches</td>
<td>isolated statements about given mathematical models and representations</td>
<td>isolated statements about given strategies or conclusions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

shading emphasises the qualities that discriminate between the A–E descriptors
Notes

Australian Curriculum common dimensions

The SEs describe the qualities of achievement in the two dimensions common to all Australian Curriculum learning area achievement standards — understanding and skills.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>understanding*</td>
<td>the concepts underpinning and connecting knowledge in a learning area, related to a student’s ability to appropriately select and apply knowledge to solve problems in that learning area</td>
</tr>
<tr>
<td>skills*</td>
<td>the specific techniques, strategies and processes in a learning area</td>
</tr>
</tbody>
</table>

Terms used in Year 10 Mathematics SEs

The following terms are used in the Year 10 Mathematics SEs. They help to clarify the descriptors and should be used in conjunction with the ACARA Australian Curriculum Mathematics glossary: www.australiancurriculum.edu.au/Mathematics/Glossary.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy; accurate</td>
<td>consistent with a standard, rule, convention or known fact</td>
</tr>
<tr>
<td>application; apply*</td>
<td>use or employ in a particular situation</td>
</tr>
<tr>
<td>appropriate aspects</td>
<td>fitting, suitable to the context</td>
</tr>
<tr>
<td>clarity; clear</td>
<td>without ambiguity; explicit</td>
</tr>
<tr>
<td>comparison; compare*</td>
<td>estimate, measure or note how things are similar or dissimilar</td>
</tr>
<tr>
<td>complex familiar</td>
<td>students are required to choose and apply procedures in a situation involving a number of elements, components or steps in a context that has been a focus of prior learning</td>
</tr>
<tr>
<td>complex unfamiliar</td>
<td>students are required to choose and apply procedures in a situation involving a number of elements, components or steps in a context in which students have had limited prior experience</td>
</tr>
<tr>
<td>conceptual understanding</td>
<td>connection, description, recognition and identification of mathematical concepts and relationships; in Year 10, examples include: Number and algebra</td>
</tr>
<tr>
<td></td>
<td>• applying the four operations to algebraic fractions</td>
</tr>
<tr>
<td></td>
<td>• making the connection between equations of relations and their graphs</td>
</tr>
<tr>
<td></td>
<td>• understanding the relationship between factorisation and expansion</td>
</tr>
<tr>
<td></td>
<td>• exploring the method of completing the square to factorise quadratic expressions and solve quadratic equations</td>
</tr>
<tr>
<td></td>
<td>• representing word problems with simple, linear equations and inequalities</td>
</tr>
<tr>
<td></td>
<td>• associating the solution of simultaneous equations with the coordinates of the intersection of their corresponding graphs</td>
</tr>
<tr>
<td></td>
<td>• comparing simple and compound interest in financial contexts</td>
</tr>
</tbody>
</table>

* denotes dimensions and terms described by ACARA; unmarked terms are described by QCAA
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Measurement and geometry** | • distinguishing between a practical demonstration and a proof,
| | e.g. demonstrating triangles are congruent by placing them on top of each
| | other, as compared to using congruence tests to establish that triangles are
| | congruent
| | • using authentic situations to apply knowledge and understanding of surface
| | area and volume
| **Statistics and probability** | • determining probabilities of two- and three-step experiments
| | • recognising that an event can be dependent on another event and that this will
| | affect the way its probability is calculated
| connection; connect | establish a link
| consistent | regular in occurrence; in agreement and not self-contradictory
| description; descriptive; describe* | give an account of characteristics or features
| discussion; discuss* | talk or write about a topic, taking in to account different issues or ideas
| effective | meeting the assigned purpose in a considered and/or efficient manner to
| | produce a desired or intended result
| evaluation; evaluate* | examine and judge the merit or significance of something
| explanation; explanatory; explain* | provide additional information that demonstrates understanding of reasoning
| | and/or application
| fluency | students develop skills in choosing appropriate procedures, carrying out
| | procedures flexibly, accurately, efficiently and appropriately, and recalling factual
| | knowledge and concepts readily; students are fluent when they calculate answers efficiently, when they recognise
| | robust ways of answering questions, when they choose appropriate methods
| | and approximations, when they recall definitions and regularly use facts, and
| | when they can manipulate expressions and equations to find solutions; in Year 10, **fluency** is represented in the valued features of **procedural fluency** and **mathematical language and symbols**
| given | known or provided
| identification; identify* | establish or indicate who or what someone or something is
| investigate* | plan, collect and interpret data/information and draw conclusions about
| isolation; isolated | unconnected; set apart
| justification; justify* | show how an argument or conclusion is right or reasonable
| logic; logical | sequence of sound reasoning

Terms marked with an asterisk () denote technical vocabulary specific to mathematics.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| **mathematical language and symbols** | use of appropriate mathematical terminology, diagrams, conventions and symbols; in Year 10, examples include:
 * **Number and algebra**
 - direct proportion, rate, integer, indices, simplify, factorise, product, quotient
 - evaluate, scientific notation
 - quadratic, inequality, exponential
 - simple interest, compound interest, interest rate
 - Cartesian plane, midpoint, gradient, linear, non-linear, parabola
 - using function notation to describe and sketch functions
 * **Measurement and geometry**
 - composite solid, surface area, volume, net, capacity
 - similarity, transformation, congruence, parallel, perpendicular
 - elevation, depression
 - communicating a proof using a sequence of logically connected statements
 * **Statistics and probability**
 - census, survey, variable, secondary data, histogram, stem-and-leaf plot, bivariate numerical data, representative data
 - population, frequency, sample, event, dependent, independent |
| **mathematical modelling** | depicting a situation that expresses relationships using mathematical concepts and language; in Year 10, examples include:
 - drawing, interpreting and analysing graphs of physical phenomena
 - constructing and interpreting data displays representing bivariate data over time
 - sketching and interpreting a variety of non-linear relationships
 - investigating the use of polynomials to model real world situations, such as projectile motion or cost analysis in economics |
| **obvious** | evident; apparent |
| **partial** | incomplete, half-done, unfinished |
| **problem solving** | students develop the ability to make choices, interpret, formulate, model and investigate problem situations, and communicate solutions effectively; students formulate and solve problems when they use mathematics to represent unfamiliar or meaningful situations, when they design investigations and plan their approaches, when they apply their existing strategies to seek solutions, and when they verify that their answers are reasonable; in Year 10, problem solving is represented in the valued features of problem-solving approaches and mathematical modelling |
| **problem solving approaches** | use of problem-solving approaches to investigate situations; in Year 10, examples include:
 - posing a question
 - making choices when designing investigations
 - interpreting mathematical or real-life situations
 - determining the evidence needed to support a conclusion or hypothesis
 - formulating a plan
 - selecting and applying appropriate algebraic techniques to operate with algebraic expressions
 - using algebraic and graphical techniques to find solutions to simultaneous equations and inequalities
 - investigating and determining the volumes and surface areas of composite solid shapes |
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| Term | solids by considering the individual solids from which they are constructed
• applying Pythagoras’s theorem and trigonometry to problems in surveying and design
• using geometry software to investigate geometrical figures
• investigating the shape of data sets
• generalising mathematical ideas and techniques to analyse, interpret, evaluate and solve problems
• using a variety of techniques to solve quadratic equations, including grouping, completing the square, the quadratic formula and choosing two integers with the required product and sum
• using lines of best fit to make predictions and predicting what might happen beyond known data values
• using arrays and tree diagrams to determine probabilities
• verifying that answers are reasonable |
| procedural fluency | recall and use of facts, definitions, technologies and procedures to find solutions in Year 10, examples include:
Number and algebra
• finding unknowns in formulas after substitution
• factorising and expanding algebraic expressions
• using the index laws to simplify products and quotients of algebraic fractions
• using a range of strategies to solve equations
• sketching graphs of parabolas, circles and exponential functions
• calculating compound interest
Measurement and geometry
• stating definitions for plane shapes
• using formulas to find the surface areas and volumes of pyramids, right cones, spheres and related composite solids
• finding solutions to right-angle triangle problems using the sine, cosine and tangent ratios
Statistics and probability
• calculating quartiles and inter-quartile ranges
• calculating the mean and standard deviation |
| range | covers the scope of relevant situations or elements; in Year 10, the range of situations and problems included simple familiar, simple unfamiliar, complex familiar and complex unfamiliar |
| reasoning | students develop an increasingly sophisticated capacity for logical thought and actions, such as analysing, proving, evaluating, explaining, inferring, justifying and generalising;
students are reasoning mathematically when they explain their thinking, when they deduce and justify strategies used and conclusions reached, when they adapt the known to the unknown, when they transfer learning from one context to another, when they prove that something is true or false and when they compare and contrast related ideas and explain their choices;
in Year 10, reasoning is represented in the valued features of reasoning and justification and mathematical modelling |
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
</table>
| reasoning and justification | description and explanation of mathematical thinking and reasoning, including discussion, justification and evaluation of choices made, strategies used, proofs formulated and conclusions reached; in Year 10, examples include:
 • formulating geometric proofs involving congruence and similarity
 • deducing properties of geometric figures
 • using deductive reasoning in presenting arguments and formal proofs
 • performing a sequence of steps to determine an unknown angle giving a justification in moving from one step to the next
 • using and interpreting formal definitions and generalisations when explaining solutions and/or conjectures
 • using lines of best fit to identify relationships
 • interpreting and evaluating media statements
 • interpreting and comparing data sets
 • using the mean and standard deviation to compare two sets of data |
| reasons; reasoned | logical and sound; presented with justification |
| recall* | remember information, ideas or experiences |
| recognition; recognise | to be aware of, or acknowledge |
| relevant | connected to the matter in hand |
| represent* | use words, images, symbols or signs to convey meaning |
| simple familiar | students are required to choose and apply procedures in a situation involving few elements, components or steps, and in a context that has been a focus of prior learning |
| statement; state | a sentence or assertion |
| thorough understanding | demonstrating depth and breadth, inclusive of relevant detail
 students build a robust knowledge of adaptable and transferable mathematical concepts; they make connections between related concepts and progressively apply the familiar to develop new ideas; they develop an understanding of the relationship between the ‘why’ and the ‘how’ of mathematics;
 students build understanding when they connect related ideas, when they represent concepts in different ways, when they identify commonalities and differences between aspects of content, when they describe their thinking mathematically and when they interpret mathematical information;
 in Year 10, understanding is represented in the valued features of conceptual understanding and mathematical language and symbols |
| use; use of | to operate or put into effect |