Prep-Year 10 Science Australian Curriculum Version 9.0: Sequence of achievement standards aspects This resource provides a sequence of achievement standards aspects, for Prep-Year 10 Science, organised by strands and sub-strands. By breaking each achievement standard into discrete aspects, the increasing complexity of the achievement standard can be seen across Prep—Year 10. This supports teachers to identify the knowledge, understanding and skills that come before and after the enrolled year level/band. When planning teaching, learning and assessment, teachers can use this resource to: - plan for the range of students within a single year level - determine appropriate curriculum access points for all students - better understand aspects of achievement standards through consideration of where they are introduced, their progression and where they conclude. | | | Prep
Students: | Year 1
Students: | Year 2
Students: | Year 3 Students: | Year 4 Students: | Year 5 Students: | Year 6 Students: | Year 7 Students: | Year 8 Students: | Year 9 Students: | Year 10
Students: | |-----------------------|--------------------------|---|---|--|---|--|---|--|--|--|---|---| | | Biological sciences | group plants and
animals based on
external features | identify how living
things meet their
needs in the places
they live | No related achievement standard aspect for Year 2. | classify and
compare living and
non-living things
and different life
cycles | identify the roles of
organisms in a
habitat and
construct food
chains | explain how the
form and behaviour
of living things
enables survival | explain how
changes in
physical conditions
affect living things | explain how
biological diversity
is ordered and
organised
represent flows of
matter and energy
in ecosystems and
predict the effects
of environmental
changes | explain the role of specialised cell structures and organelles in cellular function analyse the relationship between structure and function at organ and body system levels | explain how body systems provide a coordinated response to stimuli describe how the processes of sexual and asexual reproduction enable survival of the species | explain the processes that underpin heredity and genetic diversity describe the evidence supporting the theory of evolution by natural selection | | Science understanding | Earth and space sciences | This aspect of the achievement standard begins in Year 1. | identify daily and
seasonal changes
and describe ways
these changes
affect their
everyday life | identify celestial
objects and
describe patterns
they observe in the
sky | describe the observable properties of soils, rocks and minerals and describe their importance as resources | identify key
processes in the
water cycle and
describe how water
cycles through the
environment | describe key
processes that
change Earth's
surface | model the relationship between the sun and planets of the solar system and explain how the relative positions of Earth and the sun relate to observed phenomena on Earth | model cycles in
the Earth-sun-
moon system and
explain the effects
of these cycles on
Earth phenomena | apply an understanding of the theory of plate tectonics to explain patterns of change in the geosphere explain how the properties of rocks relate to their formation and influence their use | explain how
interactions within
and between
Earth's spheres
affect the carbon
cycle | sequence key events in the origin and evolution of the universe and describe the supporting evidence for the big bang theory describe trends in patterns of global climate change and identify causal factors | | | Physical sciences | identify factors that influence the movement of objects | describe how
different pushes
and pulls change
the motion and
shape of objects | demonstrate how
different sounds
can be produced
and describe the
effect of sound
energy on objects | identify sources of
heat energy and
examples of heat
transfer and
explain changes in
the temperature of
objects | identify forces
acting on objects
and describe their
effect | identify sources of
light and model the
transfer of light to
explain observed
phenomena | identify the role of
circuit components
in the transfer and
transformation of
electrical energy | represent and
explain the effects
of forces acting on
objects | compare different
forms of energy
and represent
transfer and
transformation of
energy in simple
systems | analyse energy
conservation in
simple systems
and apply wave
and particle
models to describe
energy transfer | explain how Newton's laws describe motion and apply them to predict motion of objects in a system | | | | Prep
Students: | Year 1 Students: | Year 2 Students: | Year 3 Students: | Year 4 Students: | Year 5 Students: | Year 6 Students: | Year 7 Students: | Year 8 Students: | Year 9 Students: | Year 10 Students: | |--------------------|-----------------------------------|--|---|---|--|---|--|---|---|--|---|---| | | Chemical sciences | describe the observable properties of the materials that make up objects | No related achievement standard aspect for Year 1. | identify ways to
change materials
without changing
their material
composition | classify solids and
liquids based on
observable
properties and
describe how to
cause a change of
state | relate the uses of materials to their properties | relate the particulate arrangement of solids, liquids and gases to their observable properties | classify and
compare reversible
and irreversible
changes to
substances | use particle theory
to explain the
physical properties
of substances
develop processes
that separate
mixtures | classify and
represent different
types of matter
distinguish
between physical
and chemical
change | explain observable chemical processes in terms of changes in atomic structure, atomic rearrangement and mass | explain patterns and trends in the periodic table predict the products of reactions and the effect of changing reactant and reaction conditions | | n endeavour | Nature and development of science | This aspect of the achievement standard begins in Year 3. | | | describe how
people use data to
develop
explanations | explain the role of
data in science
inquiry | describe examples of collaboration leading to advances in science, and scientific knowledge that has changed over time | explain why
science is often
collaborative and
describe different
individuals'
contributions to
scientific
knowledge | identify the factors
that can influence
development of
and lead to
changes in
scientific
knowledge | analyse how
different factors
influence
development of
and lead to
changes in
scientific
knowledge | explain the role of publication and peer review in the development of scientific knowledge explain the relationship between science, technologies and engineering | analyse the importance of publication and peer review in the development of scientific knowledge analyse the relationship between science, technologies and engineering | | Science as a human | Use and influence of science | identify examples of people using observation and questioning to learn about the natural world | describe situations where they use science in their daily lives and identify examples of people making scientific predictions | describe how people use science in their daily lives and how people use patterns to make scientific predictions | identify solutions
that use scientific
explanations | identify solutions
based on scientific
explanations and
describe the needs
these meet | identify examples where scientific knowledge informs the actions of individuals and communities | describe how individuals and communities use scientific knowledge | explain how scientific responses are developed and can impact society explain the role of science communication in shaping viewpoints, policies and regulations | analyse the key considerations that inform scientific responses and how these responses impact society analyse the importance of science communication in shaping viewpoints, policies and regulations | analyse the
different ways in
which science and
society are
interconnected | analyse the key factors that influence interactions between science and society | | Science inquiry | Questioning and predicting | pose questions and
make predictions
based on their
experiences | pose questions to
explore
observations and
make predictions
based on
experiences | pose questions to
explore observed
patterns or
relationships and
make predictions
based on
experience | pose questions to
explore patterns
and relationships
and make
predictions based
on observations | pose questions to identify patterns and relationships and make predictions based on observations | plan safe investigations to identify patterns and relationships and make reasoned predictions* | plan safe, repeatable investigations to identify patterns and test relationships and make reasoned predictions* | plan and conduct
safe, reproducible
investigations to
test relationships
and aspects of
scientific models* | plan and conduct
safe, reproducible
investigations to
test relationships
and explore
models* | plan and conduct safe, reproducible investigations to test or identify relationships and models* | plan and conduct
safe, valid and
reproducible
investigations to
test relationships
or develop
explanatory
models* | | | Prep
Students: | Year 1
Students: | Year 2
Students: | Year 3 Students: | Year 4 Students: | Year 5 Students: | Year 6 Students: | Year 7 Students: | Year 8 Students: | Year 9 Students: | Year 10
Students: | |-----------------------|---|---|--|--|---|---|--|--|---|---|---| | and conducting | engage in
investigations and
make observations
safely | follow safe
procedures to
make and record
observations | suggest steps to
be followed in an
investigation and
follow safe
procedures to
make and record
observations | use scaffolds to
plan safe
investigations and
fair tests | plan investigations
using planning
scaffolds, identify
key elements of
fair tests and
describe how they
conduct
investigations
safely | identify risks associated with investigations and key intercultural considerations when planning field work identify variables to be changed and measured | field work | identify potential
ethical issues and
intercultural
considerations
required for field
locations or use of
secondary data | describe potential
ethical issues and
intercultural
considerations
needed for specific
field locations or
use of secondary
data | describe how they have addressed any ethical and intercultural considerations when generating or using primary and secondary data | explain how they have addressed any ethical and intercultural considerations when generating or using primary and secondary data | | Planning | | | | use familiar
classroom
instruments to
make
measurements | use simple
procedures to
make accurate
formal
measurements | use equipment to
generate data with
appropriate
precision | use equipment to
generate and
record data with
appropriate
precision | use equipment to
generate and
record data with
precision | select and use
equipment to
generate and
record data with
precision | select and use
equipment to
generate and
record replicable
data with precision | select equipment and use it efficiently to generate and record appropriate sample sizes and replicable data with precision | | ng and analysing | with guidance,
represent
observations and
identify patterns | use provided tables
and organisers to
sort and order data
and information
and, with guidance,
represent patterns | and organisers to | organise data and
information using
provided scaffolds
and identify
patterns and
relationships | construct
representations to
organise data and
information and
identify patterns
and relationships | construct representations to organise data and information and describe patterns, trends and relationships | construct representations to organise and process data and information and describe patterns, trends and relationships | select and
construct
appropriate
representations to
organise data and
information | select and
construct
appropriate
representations to
organise and
process data and
information | select and
construct
appropriate
representations to
organise, process
and summarise
data and
information | select and
construct effective
representations to
organise, process
and summarise
data and
information | | Processing, modelling | | | | | | | | process data and information and analyse it to describe patterns, trends and relationships | analyse data and information to describe patterns, trends and relationships and identify anomalies | analyse and
connect data and
information to
identify and
explain patterns,
trends,
relationships and
anomalies | analyse and
connect a variety
of data and
information to
identify and
explain patterns,
trends,
relationships and
anomalies | | Evaluating | with guidance,
compare their
observations with
their predictions | with guidance,
compare
observations with
predictions and
identify further
questions | with guidance,
compare their
observations with
those of others,
identify whether
their investigation
was fair and
identify further
questions | compare their findings with those of others, explain how they kept their investigation fair, identify further questions and draw conclusions | compare their findings with those of others, assess the fairness of their investigation, identify further questions for investigation and draw conclusions | | others' methods
and findings, pose
questions for | identify possible
sources of error in
methods and
identify
unanswered
questions in
conclusions and
claims | identify assumptions and sources of error in methods and analyse conclusions and claims with reference to conflicting evidence and unanswered questions | analyse the impact of assumptions and sources of error in methods and evaluate the validity of conclusions and claims | evaluate the validity and reproducibility of methods, and the validity of conclusions and claims | | | Prep
Students: | Year 1
Students: | Year 2
Students: | Year 3
Students: | Year 4 Students: | Year 5
Students: | Year 6
Students: | Year 7 Students: | Year 8 Students: | Year 9 Students: | Year 10
Students: | |---------------|---|---|--|--|--|---|---|--|--|--|---| | | | | | | | | | identify evidence
to support their
conclusions and
construct
arguments to
support or dispute
claims | construct evidence-based arguments to support conclusions and evaluate claims | construct logical
arguments based
on evidence to
support
conclusions and
evaluate claims | construct logical
arguments based
on analysis of a
variety of evidence
to support
conclusions and
evaluate claims | | Communicating | share questions,
predictions,
observations and
ideas about their
experiences with
others | use everyday
vocabulary to
communicate
observations,
findings and ideas | use everyday and scientific vocabulary to communicate observations, findings and ideas | communicate ideas
and findings for an
identified purpose,
including using
scientific
vocabulary when
appropriate | communicate ideas
and findings for an
identified audience
and purpose,
including using
scientific
vocabulary when
appropriate | use language
features that reflect
their purpose and
audience when
communicating
their ideas and
findings | select and use language features effectively for their purpose and audience when communicating their ideas and findings | select and use language and text features appropriately for their purpose and audience when communicating their ideas and findings | select and use language and text features appropriately for their purpose when communicating their ideas, findings and arguments to specific audiences | select and use content, language and text features effectively to achieve their purpose when communicating their ideas, findings and arguments to specific audiences | select and use content, language and text features effectively to achieve their purpose when communicating their ideas, findings and arguments to diverse audiences | ^{*} indicates achievement standards aspect relating to two or more sub-strands ## **More information** If you would like more information, please visit the QCAA website www.qcaa.qld.edu.au or email the K-10 Curriculum and Assessment Branch at australiancurriculum@qcaa.qld.edu.au. Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution (include the link): © State of Queensland (QCAA) 2025 www.qcaa.qld.edu.au/copyright. Unless otherwise indicated, material from Australian Curriculum is © ACARA 2010-present, licensed under CC BY 4.0. For the latest information and additional terms of use, please check the Australian Curriculum website and its copyright notice.