Year 9 Mathematics
 Curriculum and assessment plan

Example

Context and cohort considerations
In Year 9, learning in Mathematics builds on each student's prior learning and experiences. Students engage in a range of approaches to learning and doing mathematics that develop their understanding of and fluency with concepts, procedures, and processes by making connections, reasoning, problem-solving and practice. Proficiency in mathematics enables students to respond to familiar and unfamiliar situations by employing mathematical strategies to make informed decisions and solve problems efficiently. Students further develop proficiency and positive dispositions towards mathematics and its use as they

- apply scientific notation in measurement contexts, routinely consider accuracy in measurement and work with absolute, relative and percentage errors in a range of different measurement contexts
- work with the real number line as a geometric model for real numbers that provides a continuous measurement scale; locate different fractions exactly on the common scale of the real number line using scale and similarity, and locate some irrational square roots of natural numbers using Pythagoras' theorem
- use linear and quadratic functions to model a broad range of phenomena and contexts, make predictions, and represent these using tables, graphs and algebra, including with the use of digital tools
- manipulate algebraic expressions involving variables, exponents, and the expansion and factorisation of simple quadratic expressions using a variety of techniques including tables, diagrams, algorithms and digital tools
- formulate and solve related linear and non-linear equations exactly or approximately using numerical, graphical and algebraic approaches
- solve measurement problems about the surface area and volume of objects and apply formulas to solve problems, calculating these and related dimensions of objects as required
- use similarity, scale, trigonometry, enlargement transformations, the triangle inequality and Pythagoras' theorem to solve practical problems using given sets of information
- investigate probabilities of compound events from two-step experiments and solve related problems; use a variety of representations such as Venn diagrams, tree diagrams, two-way tables and grids to assist in determining the probabilities for these events; design experiments to gather empirical data about relative frequencies and use these to check their reasoning
- compare multiple numerical data subsets in context and analyse their distributions with consideration of symmetry and skew; justify their choice of data representation with respect to data types and context, and critically review the statistical presentation of data and related arguments of others.

The Year 9 cohort participates in regular mathematics lessons. This plan has considered:
timing of NAPLAN in Term 1

- summative and formative data from Year 8 showing the need to support and extend on their knowledge of algebra
- exploration and use of digital tools, e.g. virtual material, electronic devices, simulation programs and dynamic geometric software, in relevant contexts that support the learning and doing of mathematics.

Queensland Curriculum Queensland Curriculum
\& Assessment Authority

Duration: 10 weeks
Trigonometry supports the development of flexible, creative and logical thinking needed for problem-solving, through the application of theorems and algorithms. This unit focuses on building student understanding and skills in trigonometry, enlargement and reduction of objects and shapes and geometic constructions.

In the first phase of this unit, students extend their knowledge of similarity, ratio and Pythagoras' theorem from Year 8 to develop their understanding of scale factor and trigonometry Through practical investigations, using hands on materials, e.g. rope, string and tape measures, and diagrams, e.g. architecture designs, house and garden designs, students make conceptual connections between direct proportion, ratio similarity and scale factor involving the enlargement and explain these transformations and solve problems. Students continue to use this knowledge to investigate and understand trigonometric ratios using materials, e.g. hand made clinometers to solve problems involving right-angled triangles in the school environment, e.g measuring the height of buildngs and sport equipment. Student understanding and fluency is assessed in an end-of-semester examination at the end of Unit 2.

In the second phase of this unit, students use computational thinking skills to design, use, test and refine algorithms based on a geometric constructions, e.g. drawing shapes accurately in the structure of a fractal found in nature, such as a snowflake, and/or theorems of choice, e.g. triangle inequality theorem. Students use digital tools, e.g. geometric and coding solware, to present their algorithms and reasoning in a computational thinking multimodal presentation.

Duration: 10 weeks
The use of mathematical expressions and models can enhance problem-solving skills, providing a systematic and structured approach when analysing real-world scenarios. Students are able to develop critical thinking and logical reasoning to break down complex problems into manageable components. Additionally, the application of mathematical models fosters a deeper understanding of quantitative relationships, empowering students to make informed decisions in various aspects of marthetical in mossions and mols to represent and solve practical everyday problems.

In the first phase of this unit, students extend their In the first phase of this unit, students extend their
algebraic knowledge of exponent laws from Year 8 to algebraic knowedge of exponent laws from Year 8 exponents and variables. Students connect this nowledge to explore real-world contexts, e.g. the size of organisms that can't been seen with the naked eye he distance between planets, speed of light and area o scientific notation and solve problems involving very small and very large measurements, and time scales. Students use materials, e.g. algebra tiles and area models, to build an understanding of associative, commutative and distributive properties. They are introduced to the concept of quadratic functions throug real-world scenarios, e.g throwing of a ball into the air can be represented as a quadratic function. They connect the relatonship of expansion and factorisation to expand binomials and factorise monic quadratic expressions. They use digital tools to graph quadratic unctions, interpreting features, e.g symmetry, turning point and solve monic quadratic equations with intege oots using school environment scenarios, e.g equation to maximise or minimise perimeter.

In the second phase of this unit students use critica thinking skills and knowledge of linear and quadratic representations to demonstrate how either linear or To understand how algebra is purposeful in the world, sudents connect their mathematical knowlede to create models in real-world contexts, e.g modelling the height of a projectile, such as a ball, over time or comparing two financial investments over time.

This unit concludes with an end-of-semester examination, using understanding, fluency, reasoning and problem-solving concepts from Units 1 and 2.

Duration: 10 weeks
When reaching complex financial and practical decisions, it is important to make conceptual connections across different strands of mathematics. In this unit, students compare values, identify and interrogate relationships, solve equations and use mathematical models and simulations to find solutions to problems.

In the first phase of this unit, students explore through practical examples, e.g. a map of the school, line segment on a Carteasian plane and make connections between distance, midpoint and gradient of a line segment with other mathematical concepts including Pythagoras theorem mean, ratios and rates. This part of the unit will be assessed in the end-oi-semester examination in Term 4. In the second part of this phase, students then apply thei Kowedge or drect proporion, ratio and scale factor, financial contexts, eg creating a floor plan for a spa house and the cost of resources to build Students demonstrate their understanding fluency and reas skills in a mathematical modelling task to design and provide the cost to produce a logo for a company.

In the second phase of this unit, students use their critical and creative thinking skills to design and conduct repeated chance experiments and simulations for combined events, using digital tools. They trial various experiments to outcomes for compound evens, with and without replacement and calculate relative frequencies to estimate probabilities of events involving 'and', inclusive 'or' and exclusive or. They make connections in their mathem planning a whe of the probabilities of different combinations of events during the outing. Through their probability experiment and simulation problem-solving task, they determine the outcomes for compound events and represent and assign probabilities in different ways, e.g. lists, tree diagrams, tables. Students demonstrate their results in a multimodal presentation

Duration: 10 weeks
Breaking down complex mathematical information

 ical and creative thinking, students can navigate and master intricate concepts across various mathematical strands. Using this information and data, student are able oo make claims or find possible solutions to problems. In his unit, students break down complex or comprehensive data into fundamental parts for analysis in statistics and measurement design.

In the first phase of this unit, students build on their knowledge of data collection and representation techniques from Year 8 and use analytical and critical thinking skills to investigate and analyse a variety of reports, e.g. public Statistics, collected from online databases. Students analyse how sampling methods and representation choid can be used to support or question conclusions or to promote a point of view. Students then plan and conduct statistical investigation and use digital tools, e g
 distribution of multiple data sets using comparative data displays for analysis. Students report their findings in a statistical investigation report, including a discussion on the strength of evidence to support their conclusions.

In the second phase of this unit, students build critical and creative skills using environmental stimulus, e.g rain wate tank design, to develop understanding and fluency in solving problems involving volume, surface area of righ prisms and cylinders. This builds on students understanding and fluency of volume and area from Year 8.
his unit concludes with an end-of-semester examination, and 4

Where there is one assessment item within a unit, the corresponding achievement standard aspect/s is indicated in blue.
Where there is a second assessment item within a unit, the corresponding achievement standard aspect/s is indicated in yellow.
Where there is an assessment item that is assessed across units, e.g. end-of-semester examination, the corresponding achievement standard aspect/s is indicated in green.

Unit 1 - Shaping up nicely
Unit 2 - Functioning in everyday life
Unit 3 - Possiblities and decisions
Unit 4 - Thinking outside the box
 thinking

Description: Students use computationa thinking skills in this short, focused task to choose either a geometric construction process, e.g. using a compass to bisect a line to measure segments and angles for a shape in nature, such as the petals of a flower, or a theorem, e.g. Pythagorean triplets, to investigate and present to the class. Student use digital tools to design and test their algorithm to ensure the sequence of steps can Students present their algorithm and Studening to the clas ss through a multimedia presentation.

Technique: Project
Mode: Spoken/signed
Conditions:

- issued in week 7 and completed by end of week 9 (including 3 hours of class time) - spoken/signed response up to 5 minutes
Term/

Assessment 3 — Examination
Description: Students undertake a two-part end-of-semester examination covering topics from Units 1 and 2.
Part A: Short response
Students respond to understanding, fluency
and reasoning questions focusing on:

- recognising and using rational and irrational numbers to solve problems
- applying the exponent laws to numerical expressions with integer exponets and extend to variables
- expanding binomial products and factorising monic quadratic expressions, simplifying algebraic expressions
- identifying and graphing quadratic functions,
solving quadratic equations graphically and numerically
- solving monic quadratic equations with integer roots algebraically
- expressing small and large numbers in scientific notation
- solving problems involving ratio, similarity and scale in two-dimensional situations determining percentage errors in measurements
- applying Pythagoras' theorem and using trigonometric ratios to solve problems involving right-angled triangles
- applying the enlargement transformation to images of shapes and objects and interpreting results.

Part B: Extended response
Students use stimulus to respond to a mathematical modelling scenario to choose linear or quadratic functions to compare two investment options to determine maximis return over a period of time. Students parameters, graphically and algebraically, to evaluate the model and report their findings

Technique : Examination
Mode : Written
Conditions :

- Part A and Part B each up to 70 minutes, plus 5 minutes perusal, under supervised conditions
- calculator allowe
Term 2 Description: In this task, students apply their Week 8
Assessment 4 - Project: Mathematica understanding and skills of direct proportion,

| Term/ |
| :--- | :--- |
| week |$|$ ratio and scale to design a logo for a billboard advertisement. Included in the written report response, students include costings to replicate the enlarged logo demonstrating their use of mathematical modelling problem-solving proficiency processes.

Technique: Project
Mode: Written
Conditions:

- issued in week 3 and completed by the end of week 5 (including 3 hours of class time) - written responses up to 800 words

Assessment 5 - Probability experimen

 and simulationsDescription: Through a short, focused
probability experiment and simulation project, students design a dice game for a local board game night. The game is to involve
non-conventional dice with different numbers of sides. By investigating both theoretical and experimental probabilities, students compare he probabilities of simple events to related compound events and deterilusions mame usions mad

Technique: Project

Mode: Written, practical
Conditions:

- issued in week 7 and by end of week 9
(including 3 hours of class time)
multimodal response up to 5 minutes
- practical as negotiated

Assessment 6 - Project: Statistical who they believe is the greatest of all time (GOAT) in a field of their choosing. Through a written response, students will develop their wn criteria to make a justified decision. Students will include tables, figures and diagrams to support their conclusions.

Technique: Project

Mode: Written
Conditions
issued in week 3 and completed by the end of week 5 (including 2 hours of class time) - written responses up to 800 words

Term/ Assessment 7 - Examination

Description: In this task, students answer Week 9 short response understanding, fluency and resoning questions, focusing on
finding the distance between two points on the Cartesian plane, and the gradient and midpoint of a line segment

- applying formulas to solve problems involving the surface area and volume of right prisms and cylinders.

Technique: Examination

Mode: Written

- up to 70 minutes, plus 5 minutes perusal under supervised conditions
- calculator allowed

By the end of Year 9, students recognise and use rational and irrational numbers to solve problems. They extend and apply the exponent laws with positive products, and factorise monic quadratic expressions. They find the distance between 2 points on the Cartesian plane, and the gradient and midpoint of a line segment. Students use mathematical modelling to solve problems involving change in financial and other applied contexts, choosing to use linear and quadratic functions. They graph quadratic functions and solve monic quadratic equations with integer roots algebraically. Students functions and relations using digital tools and make connections between their graphical and algebraic representations

They apply formulas to solve problems involving the surface area and volume of right prisms and cylinders. Students solve problems involving ratio, similarity an scale in two-dimensional situations. They determine Pythagoras' theorem and use trigono-tric catios to solve problems involving right-angled triangles. They mathematical modelling to solve practical problems involving direct proportion, ratio and scale, evaluating the model and communicating their methods and findings. Students express small and large numbers in scientific notation. They apply the enlargement transformation to images on shapes and obdects, and interpretresult. Students design, use and test algorithms based on geometric constructions or theorems.

They compare and analyse the distributions of multiple numerical data sets, choose representations, describe features of these data sets using summary statistics and the shape of distributions, and consider the effect of outliers. Students explain how sampling techniques and representation can be used to support or question conclusions or to promote a point of view. They determine sets of outcomes for compound events and represent these in various ways. Students assign probabiifties to the outcomes of compound events. The combined events using digital tools.

Calibration: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 9, students recognise and use rational and irrational numbers to solve problems. They extend and apply the exponent laws with positive integers to variables. Students expand binomial products, and factorise monic_quadratic expressions. They find the distance between 2 points on the Cartesian plane, and the gradient and midpoint of a line segment. Students use mathematical modelling to solve problems involving change in financial and other applied contexts, choosing to use linear and quadratic functions. They graph quadratic functions and solve monic quadratic equalions we ifects of variation of parameters on functions and relations, using digital tools, and mak connections between their graphical and algebraic representations

They apply formulas to solve problems involving the surface area and volume of right prisms and cylinders scale in two-dimensional situations. They determine percentage errors in measurements. Students apply Pythagoras' theorem and use trigonometric ratios to solve problems involving right-angled triangles. They use mathematical modelling to solve practical problems involving direct proportion, ratio and scale, evaluating the model and communicating their methods and findings. Students express small and large numbers in scientific notation. They apply the enlargement transformation to images of shapes and objects, and interpret results. Students design, use and test algorithms based on geometric constructions or theorems.

They compare and analyse the distributions of multiple numerical data sets, choose representations, describe features of these data sets using summary statistics and the shape of distributions, and consider the effect of outiliers. Students explain how sampling techniques and representation can be used to support or question conclusions or to promote a point of view. They determine sets opoutcomes por compound events and represent these in various ways. Students assign design and conduct experiments or simulations for combined events using digital tools..

Consensus: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 9, students recognise and use rational and irrational numbers to solve problems. They extend and apply the exponent laws with positive integers to variables. Students expand binomial products, and factorise monic quadratic expressions. They find the distance between 2 points on the Cartesian plane, and the gradient and midpoint of a line segment. Students use mathematical modelling to solve problems involving change in financial and other applied contexts, choosing to use linear and quadratic functions. They graph quadratic functions and solve monic quadratic equations with integer roots algebraically. Students dunctions and relations, using digital tols, and make conections between their graphical and algebraic representations.

They apply formulas to solve problems involving the surface area and volume of right prisms and cylinders Students solve problems involving ratio, similarity and two-dimensional situations. They determine percentage errors in measurements. Students apply solve prob theorem and use trigonometric ratios The mathematical modelling to solve practical problems involving direct proportion, ratio and scale, evaluating the model and communicating their methods and findings. Students express small and large numbers in scientific notation. They apply the enlargement transformation to images of shapes and objects, and interpret results. Students design, use and test algorithms based on geometric constructions or theorems.

They compare and analyse the distributions of multiple numerical data sets, choose representations, describe features of these data sets using summary statistics and the shape of distributions, and consider the effect of outliers. Students explain how sampling techniques and representation can be used to support or question conclusions or to promote a point of view. They determine sets in various wars. Students avents and probabilities to the outcomes of compound assign design and conduct experiments or simulations for They combined events using digital tools.

Expert: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 9, students recognise and use rational and irrational numbers to solve problems. They extend and apply the exponent laws with positive products, and factorise monic quadratic expressions. They find the distance between 2 points on the Cartesian plane, and the gradient and midpoint of a line segment. Students use mathematical modeling to solve problems involving change in financial and other applied contexts, choosing to use linear and quadratic functions. They graph quadratic functions and solve monic quadratic equations with integer roots algebraically. Students unctions and relations, using digital tools, and mak connections between their graphical and algebraic representations.

They apply formulas to solve problems involving the surface area and volume of right prisms and cylinders. sudents solve problems involving ratio, similarity and percentage errors in measurements. Students apply Pythagoras' theorem and use trigonometric ratios to solve problems involving right-angled triangles. They use mathematical modelling to solve practical problems involving direct proportion, ratio and scale, evaluating the model and communicating their methods and findings. Students express small and large numbers in scientific notation. They apply the enlargement transformation to mages of shapes and objects, and interpret results. Students design, use and test algorithms based on geometric constructions or theorems.

They compare and analyse the distributions of multiple numerical data sets, choose representations, describe eatures of these data sets using summary statistics and the shape of distributions, and consider the effect of outliers. Students explain how sampling techniques and epresentation can be used to support or question conclusions or to promote a point of view. They determine sets of outcomes for compound events and represent these in various ways. Students assign design and conduct experiments or simulations for combined events using digital tools.

Calibration: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

General capabilities	Units			
	1	2	3	4
Critical and creative thinking	V	\square	\square	\square
Digital literacy	∇	∇	∇	∇
Ethical understanding	\square	\square	\square	\square
Intercultural understanding	\square	\square	\square	\square
Literacy	V	\square	\square	\square
Numeracy	V	V	∇	\checkmark
Personal and social capability	\square	\square	\square	\square

Cross-curriculum priorities	Units			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Aboriginal and Torres Strait Islander histories and cultures	\square	\square	\square	\square
Asia and Australia's engagement with Asia	\square	\square	\square	\square
Sustainability	\square	\square	\square	\square

(c)(i) © State of Queensland (QCAA) 2023

 www.qcaa.qld.edu.au/copyright.
Unless otherwise indicated, material from Australian Curriculum is © ACARA 2010-present, licensed CC BY 4.0. For the latest information and additional terms of use, see the Australian Curriculum website and its copyright notice.

