Year 5 Mathematics
 Curriculum and assessment plan

Example

Level description

Context and cohort considerations

In Year 5 , learning in Mathematics builds on each student's prior learning and experiences. Students engage in a range of approaches to learning and doing mathematics that develop their understanding of and fluency with concepts, procedures and processes by making connections, reasoning, problem-solving and practice. Proficiency in mathematics enables students to respond to familiar and unfamiliar situations by employing mathematical strategies to make informed decisions and solve problems efficiently

Students further develop proficiency and positive dispositions towards mathematics and its use as they

- apply their understanding of relationships to convert between forms of numbers, units and spatial representations
- use mathematical modelling to solve practical problems, with guidance, using natural numbers and operations, and report on insights and conclusions they reach about the contex - use common percentages to make proportional comparisons of quantities
- use appropriate instruments and digital tools to construct and measure angles in degrees
- use appropriate metric units to directly measure the area and perimeter of regular and irregular spaces
- locate and move positions within a grid coordinate system
- recognise what stays the same and what changes when shapes undergo transformations
- experiment with factors and multiples using algorithms and digital tools
- plan, conduct and report findings from statistical investigations that involve an increasing range of types of data and means for representing data
- develop their reasoning skills when they consider relationships between events and connect long-term frequency over many trials to the likelihood of an event occurring
he Year 5 cohort participate in daily mathematics learning. his plan has considered
- summative and formative data from Year 4 showing the need to support and extend on students understandings of place value in decimal form
- timing of NAPLAN in Term 1
- exploration and use of digital tools, e.g. virtual material electronic devices, programs and dynamic geometric software, in relevant contexts that support the learning and doing of mathematics
- timing of the use of the school kitchen as this context is incorporated into Unit 1
timing of the athletics carnival as this context is incorporated into Unit 3.

Across the year, the contexts for teaching and learning reflect authentic learning experiences of the students. Unit provides an opportunity to connect to the school kitche and garden program as students engaging in a project exploring fractions, mass and capacity in cooking. Unit 3 provides an opportunity to engage in athletics-related activities to develop mathematical understandings.

Engagement with simple recipes and cooking skills provide a meaningful context for the applications of knowledge and skills in fractions, mass and capacity. These learnings are the focus of this unit.

In the first phase of this unit, understanding of equivalent fractions from Year 4 are revised and consolidated. Students order and represent fractions with the same or related denominators, including mixed numerals, using diagrams, fraction walls, paper models, number lines and virtual materials. They draw on their proficiency with multiplication facts from Year 4 to convert between mixed numerals and improper fractions. They use a range of strategies, materials, diagrams and number lines to extend subtraction of fractions with the same or related subramion ofs. Using their part shole on reated fractions, students transfer their understandings to represent common percentages, recognising 100% as the whole. Students are then supported to connect percentages to their decimal and fraction equivalents.

In the second phase of this unit, students draw on their Year 4 knowledge, understanding and skills to use scaled instruments and approximate units to measure mass and capacity. Students then engage in a project using the context of cooking where they measure the mass and capacity of ingredients and make connection to fractiona understandings. Using the mathematical modelling process, students calculate the amount of ingredients equila cater for the class group of students, and fracion with ring andy estimation fractions with related denominators and apply estimation strategies to check the reasonableness of their calculations. Students choose and use appropriate metric units when measuring the attributes of mass and capacity as they double, triple or quadruple ingredient amounts. They develop critical and creative thinking skiils as they observations and prior knowledge to provide reasons for choices made. As students work in groups to complete the project tasks, opportunities for peer collaboration,
communication, decision-making and conflict resolution are provided to enhance personal relationships and assist the development of a cohesive cohort. Students keep a record of their findings from this unit in a learning journal.

Duration: 10 weeks
Problem-solving experiences provide students with meaningful contexts to develop critical and creative thinking skills through exploration of possibilities and testing of options. This unit provides students with a range of problem-solving experiences as they conduct chance experiments, explore factors and multiples of natural numbers and apply computational thinking skills to identify patterns and develop algorithms

In the first phase of this unit, students draw on their ractional understandings developed in Unit 1 to investigate chance events. Through hands-on investigations involving dice, spinners, cards and chance games, students explore possible outcomes, discussing the likelinood of the Students then apply these finding to hought and deductive reasoning skills as they compa situations that involve 'equally likely' and 'not equally likely' outcomes. Students consolidate their knowledge by conducting repeated chance experiments, observing recording results, and describing the relative frequency, e.g. the number five was rolled three times out of ten. These activities lead students to develop a simple game of chance that a peer can review and play, making statement about likelihood of outcomes in their game. Students present their findings from the probability experiment in an investigation report.

In the second phase of this unit, students develop computational thinking skills as they explore factors and multiples of natural numbers. They use hands-on materials nd work systematically to identry all possible factors of a number. Through the problem-solving approach of computational thinking, students recognise number patterns and develop algorithms to determine divisibility ests. In a supervised assessment, students create a flow chart using branching and yes/no decisions to represent their understanding of factors and multiples.

Duration: 10 weeks
The school athletics carnival provides an engaging contex for students to consolidate mathematical knowledge and see the connection to their everyday experiences. In this unit, students engage in athletics-related activities to develop their understanding of decimal numbers, measurement, statistics and grid coordinates.

In the first phase of this unit, the context for investigations (athletics) and the means to collect evidence of learning (project) is established. There is an ongoing collection of evidence of students' learning throughout the unit. As students practice and train for the athletics carnival, the choose and use appropriate metric units to measure attributes of length in events such as long jump, shot put, sessions to tenths of a second and use their place value understanding to write and order times and measurement results.

In the second phase of this unit, there are many opportunities for students to develop digital literacy, e.g selecting digital tools in programs and spreadsheets vant information, developing questions, comparing displays, through statistical investigations. This may include information regarding favourite events (nominal categorical), levels of enjoyment from the carnival and ordering of personal times from fastest to slowest (ordinal categorical) and number of students in each sports house or event (discrete numerical). Students represent the data in a variety of ways, e.g. tabulaing resuls and creaing column graphs and many-to-one picture graphs. They identify the mode and interpret the shape and distribution of data to make statements about the results. Students interpret line graph such as forecasted hourly temperatures across the day and make suggestions as to when certain events should be held and breaks should be scheduled. Prior to the athletics 24 -hour time. They compare 12- and 24 -hour time systems and convert between them Students use a map of the school grounds with a grid coordinate system to sugges appropriate locations for the various events. They describe position and movement between events using directional language and coordinates. They use this grid layout, as well as hands-on measuring tasks, to estimate and measure the perimeter and area of the long jump pit and straight 100 m running track. Throughout this unit, students keep a learning journal with samples of their learning.

Mathematics is integral to design in architecture, art and everyday objects. Concepts of pattern, shape, symmetry and angles are combined in design models and provide structures to design ideas and principles. This unit engages students in developing critical and creative thinking skills as they identify, process and evaluate information in geometric designs and communicate their understandings.

In the first phase of this unit, students explore motif designs that incorporate shapes, angles, translations, reflections and rotations of shapes and symmetry. They are immersed in designs from a range of cultures and time periods to investigate how each of these concepts are applied to motif crealions. Sludents then use dynamic geometric sotware ransformations, identifying any symmetries and estim and measuring angles in degres. Students use their
 dimensional nets of three-dimensional objects. They sketch nets and build three-dimensional objects from these sketches. Students create skeletal models that contain prisms and pyramids out of materials including straws and plasticine and sketch their designs on isometric dot paper. To demonstrate understanding and fluency students keep a digital investigation folio with samples of their findings using sketches, designs, digital presentations, photographs and annotations.

In the second phase of this unit, students use their proficiency with multiplication facts to multiply and divide large numbers and to find unknown values in numerical equations. They use physical and virtual materials, diagrams and arrays to explore associative and cumulative properties of multiplication. Students use a range of strategies, e.g. doubling or halving, thinking of factors, using the inverse relationship, to find solutions and check he reasonableness of answers using estimation. Evidence of student understanding and fluenc through a supervised assessment.

Where there is one assessment item within a unit, the corresponding achievement standard aspect/s is indicated in blue.
Where there is a second assessment item within a unit, the corresponding achievement standard aspect/s is indicated in yellow

Unit 1 - Cooking with Maths		Unit 2 - What are the possibilities?		Unit 3 - Run, jump, calculate!		Unit 4 - Designing solutions	
Assessment 1 - Project: Mathematical modelling	Term/ week	Assessment 2 - Project: Probability experiment and simulations	Term/ week	Assessment 4 - Project: Statistical investigation	Term/ week	Assessment 5- Project	Term/ week
Description: Through a series of cooking experiences, students record responses to mathematical problems in a learning journal, e.g. drawings, photographs/ diagrams, written descriptions and calculations, to demonstrate their proficiencies when: - using the mathematical modelling process to plan a cooking lesson for the class - calculating the amount of ingredients required to cater for the class by ordering, representing, adding and subtracting fractions with the same or related denominators - representing common percentages and connecting them to their fraction and decimal equivalents - applying estimation strategies to check the reasonableness of their calculations - choosing and using appropriate metric units to measure the attributes of mass and capacity. Technique: Project Mode: Written and practical (using appropriate metric units when measuring the mass and capacity of objects)	Term 1 Week 10	Description: Students conduct a chance experiment investigating the fairness of their classmate's simple game of chance. Students demonstrate all four proficiencies in their investigation report when: - conducting repeated chance experiments - listing the possible outcomes of the simple game of chance - estimating likelihoods of outcomes - making comparisons between outcomes with and without equally likely outcomes - identifying the fairness of the simple game of chance. Technique: Project Mode: Written and practical (conducting chance experiments) Conditions: - completed over multiple lessons in week 5 - written responses up to 400 words - practical components are observed by the teacher	Term 2 Week 5	Description: Throughout the term, students collect evidence of their learning through a learning journal. Using the athletics carnival as a context, they record results from 100 m sprint, long jump, shot put, discus and high jump practice sessions. They conduct statistical investigations, representing the data in a variety of ways and interpreting the data connected to the athletics carnival. Students also create a timetable in 24 -hour time and a map of the area which they use to locate positions and solve problems involving area and perimeter. Technique: Project Mode: Written and practical (using appropriate metric units when measuring length) Conditions: - issued in week 3 and completed over multiple lessons by the end of week 10 - written responses up to 400 words - practical components are observed by the teacher	Term 3 Week 10	Description: Students keep a digital investigation folio, e.g. drawings/sketches, photographs/diagrams, on how mathematics is used in design, e.g. motif designs, artworks, skeletal models. The folio shows annotated samples of students' learning, focusing on their understanding and fluency when: - performing transformations and identifying any symmetries in motif designs - describing the results of the transformations - estimating, constructing and measuring angles in degrees in motif designs - connecting objects to their two-dimensional nets in skeletal models and diagrams. Technique: Project Mode: Written (including images, photographs, digital presentation) and practical (constructing and measuring angles, performing transformations) Conditions: - issued in week 2 and completed over multiple lessons by end of week 4 - practical components are observed by the teacher	Term 4 Week 4
- issued in week 4 and completed over multiple lessons by the end of week 10		Assessment 3 - Supervised assessment: Computational thinking	Term/ week			Assessment 6-Supervised assessment	Term/ week
- practical components are observed by the teacher		Description: Students answer short response questions to demonstrate their knowledge of factors and multiples and to create and use algorithms. They use the computational thinking process to create a flow chart involving branching and yes/no decisions to determine divisibility. Technique: Supervised assessment Mode: Written Conditions: - up to 60 minutes, plus 5 minutes perusal and/or planning time	Term 2 Week 9			Description: Students answer short response questions focusing on their understanding, fluency and reasoning when: - using their proficiency with multiplication facts and efficient calculation strategies to multiply large numbers by one- and two-digit numbers and divide by single-digit numbers - checking the reasonableness of calculations using estimation - applying properties of numbers and operations to find unknown values in numerical equations involving multiplication and division. Technique: Supervised assessment Mode: Written Conditions: - up to 60 minutes, plus 5 minutes perusal and/or planning time	Term 4 Week 7

By the end of Year 5, students use place value to write and order decimals including decimals greater than one identify muss natural numbers as products of factors and res. Students order and represent, add and They ropractions with the same or related denominators to their fraction and decimal equivalents. Students use their proficiency with multiplication facts and efficient calculation strategies to multiply large numbers by oneand two-digit numbers and divide by single-digit numbers. They check the reasonableness of their calculations using estimation. Students use mathematica formulating and solving problems, choosing arithmetic operations and interpreting results in terms of the situation. They apply properties of numbers and operations to find unknown values in numerical equations involving multiplication and division. Students create and use algorithms to identify and explain patterns in the factors and multiples of numbers.

They choose and use appropriate metric units to measure the attributes of length, mass and capacity, and to solve problems involving perimeter and area. Studen convert between 12- and 24 -hour time. They estimate, construct and measure angles in degrees. Students use grid coordinates to locate and move positions. They connect objects to their two-dimensional nets. Students identify any symmetries.

They plan and conduct statistical investigations that collect nominal and ordinal categorical and discrete numerical data using digital tools. Students identify the mode and interpret the shape of distributions of data in context. They interpret and compare data represented in line graphs. Students conduct repeated chance experiments, list the possible outcomes, estimate likelihoods and make comparisons between those with and without equally likely outcomes.

Calibration: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 5, students use place value to write and order decimals including decimals greater than one. They express natural numbers as products of factors and dentify multiples. Students order and represent, add and subtract fractions with the same or related denominators They represent common percentages and connect them to their fraction and decimal equivalents. Students use calculation strategies to multiply large numbers by one calculation strategies to multiply large numbers by on and two-digit numbers and divide by single-digit numbers. They check the reasonableness of their calculations using estimation. Students use mathematica formuting and solving problems, choosing arithmetic operations and interproting results in terms of the situation. They apply properties of numbers and situalion, to find unknown values in numerical involving multiplication and division. Students create and use algorithms to identify and explain patterns in the factors and multiples of numbers.

They choose and use appropriate metric units to measure the attributes of length, mass and capacity, and to solve problems involving perimeter and area. Student convert between 12- and 24 -hour time. They estimate, construct and measure angles in degrees. Students grid coordinates to locate and move positions. They connect objects to their two-dimensional nets. Students identify any symmetries.

They plan and conduct statistical investigations that collect nominal and ordinal categorical and discrete numerical data using digital tools. Students identify the mode and interpret the shape of distributions of data in context. They interpret and compare data represented in line graphs. Students conduct repeated chance
experiments, list the possible outcomes, estimate likelihoods and make comparisons between those with and without equally likely outcomes.

Consensus: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 5, students use place value to write and order decimals including decimals greater than one. They express natural numbers as products of factors and identify multiples. Students order and represent, add and subtract fractions with the same or related denominators. They represent common percentages and connect them their proficiency with multiplication facts and efficient calculation strategies to multiply large numbers by one and two-digit numbers and divide by single-digit numbers. They check the reasonableness of their calculations using estimation. Students use mathematica modelling to solve financial and other practical problems, formulating and solving problems, choosing arithmetic perations and interpreting results in terms of the situation. They apply properties of numbers and operations to find unknown values in numerical equations use algorithms to identify and explain patterns in the factors and multiples of numbers.

They choose and use appropriate metric units to measure the attributes of length, mass and capacity, and o solve problems involving perimeter and area. Students convert between 12-and 24 -hour time. They estimate, onstruct and measure angles in degrees. Students coordinates to locate and move positions. They connect objects to their two-dimensional nets. Students dentify any symmetries

They plan and conduct statistical investigations that collect nominal and ordinal categorical and discrete numerical data using digital tools. Students identify the mode and interpret the shape of distributions of data in context. They interpret and compare data represented in ine graphs. Students conduct repeated chance experiments, list the possible outcomes, estimate likelihoods and make comparisons between those with and without equally likely outcomes.

Calibration: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning
area. area

By the end of Year 5, students use place value to write and order decimals including decimals greater than one. They express natural numbers as products of factors and dentify multiples. Students order and represent, add and subtract fractions with the same or related denominators. They represent common percentages and connect them their fraction and decimal equivalents. Students use heir proficiency with multiplication facts and efficient calculation strategies to multiply large numbers by oneand two-digit numbers and divide by single-digit numbers. They check the reasonableness of their calculations using estimation. Students use mathematical ormulating and solving probans, phoosing arithmetic perations and interpreting results in terms of the ituation. They apply properties of numbers and operations to find unknown values in numerical equations involving multiplication and division Students create and use algorithms to identify and explain patterns in the factors and multiples of numbers.

They choose and use appropriate metric units to measure the attributes of length, mass and capacity, and to solve problems involving perimeter and area. Students convert between 12-and 24 -hour time. They estimate,號 moordinates to locate and move positions. They ect objects to their two-dimensional nets. Stions and dentify any symmetries.

They plan and conduct statistical investigations that collect nominal and ordinal categorical and discrete numerical data using digital tools. Students identify the mode and interpret the shape of distributions of data in mext. They interpret and compare data represented in ine graphs. Students conduct repeated chance experiments, list the possible outcomes, estimate likelihoods and make comparisons between those with and without equally likely outcomes.

Expert: Refer to QCAA moderation advice on the QCAA Expert: Refer to QCAA moderation advice on the QCAA
website under the Assessment tab in the learning area.

Content descriptions	Units				Content descriptions	Units				Content descriptions Measurement	Units			
Number	1	2	3	4		1	2	3	4		1	2	3	4
interpret, compare and order numbers with more than 2 decimal places, including numbers greater than one, using place value understanding; represent these on a number line AC9M5N01	\square	\square	V	\square	recognise and explain the connection between multiplication and division as inverse operations and use this to develop families of number facts AC9M5A01	\square	\square	\square	V	choose appropriate metric units when measuring the length, mass and capacity of objects; use smaller units or a combination of units to obtain a more accurate measure AC9M5M01	V	\square	V	\square
express natural numbers as products of their factors, recognise multiples and determine if one number is divisible by another AC9M5N02	\square	∇	\square	\square	find unknown values in numerical equations involving multiplication and division using the properties of numbers and operations AC9M5A02	\square	\square	\square	V	solve practical problems involving the perimeter and area of regular and irregular shapes using appropriate metric units AC9M5M02	\square	\square	\checkmark	\square
compare and order fractions with the same and related denominators including mixed numerals, applying knowledge of factors and multiples; represent these fractions on a number line AC9M5N03	V	\square	\square	\square						compare 12-and 24 -hour time systems and solve practical problems involving the conversion between them AC9M5M03	\square	\square	V	\square
recognise that 100% represents the complete whole and use percentages to describe, represent and compare relative size; connect familiar percentages to their decimal and fraction equivalents AC9M5N04	V	\square	\square	\square						estimate, construct and measure angles in degrees, using appropriate tools including a protractor, and relate these measures to angle names AC9M5M04	\square	\square	\square	\square
solve problems involving addition and subtraction of fractions with the same or related denominators, using different strategies AC9M5N05	V	\square	\square	\square										
solve problems involving multiplication of larger numbers by one- or two-digit numbers, choosing efficient calculation strategies and using digital tools where appropriate; check the reasonableness of answers AC9M5N06	\square	\square	\square	V										
solve problems involving division, choosing efficient strategies and using digital tools where appropriate; interpret any remainder according to the context and express results as a whole number, decimal or fraction AC9M5N07	\square	\square	\square	V										
check and explain the reasonableness of solutions to problems including financial contexts using estimation strategies appropriate to the context AC9M5N08	V	\square	\square	V										
use mathematical modelling to solve practical problems involving additive and multiplicative situations including financial contexts; formulate the problems, choosing operations and efficient calculation strategies, using digital tools where appropriate; interpret and communicate solutions in terms of the situation AC9M5N09	\square	\square	\square	\square										
create and use algorithms involving a sequence of steps and decisions and digital tools to experiment with factors, multiples and divisibility; identify, interpret and describe emerging patterns AC9M5N010	\square	■	\square	\square										

Content descriptions	Units				Content descriptions Statistics	Units				Content descriptions Probability	Units			
Space	1	2	3	4		1	2	3	4		1	2	3	4
connect objects to their nets and build objects from their nets using spatial and geometric reasoning AC9M5SP01	\square	\square	\square	V	acquire, validate and represent data for nominal and ordinal categorical and discrete numerical variables, to address a question of interest or purpose using software including spreadsheets; discuss and report on data distributions in terms of highest frequency (mode) and shape, in the context of the data AC9M5ST01	\square	\square	V	\square	list the possible outcomes of chance experiments involving equally likely outcomes and compare to those which are not equally likely AC9M5P01	\square	V	\square	\square
construct a grid coordinate system that uses coordinates to locate positions within a space; use coordinates and directional language to describe position and movement AC9M5SP02	\square	\square	V	\square	interpret line graphs representing change over time; discuss the relationships that are represented and conclusions that can be made AC9M5ST02	\square	\square	∇	\square	conduct repeated chance experiments including those with and without equally likely outcomes, observe and record the results; use frequency to compare outcomes and estimate their likelihoods AC9M5P02	\square	V	\square	\square
describe and perform translations, reflections and rotations of shapes, using dynamic geometric software where appropriate; recognise what changes and what remains the same, and identify any symmetries AC9M5SP03	\square	\square	\square	V	plan and conduct statistical investigations by posing questions or identifying a problem and collecting relevant data; choose appropriate displays and interpret the data; communicate findings within the context of the investigation AC9M5ST03	\square	\square	V	\square					

General capabilities	Units			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Critical and creative thinking	\square	\square	\square	\square
Digital literacy	\square	\square	\square	\square
Ethical understanding	\square	\square	\square	\square
Intercultural understanding	\square	\square	\square	\square
Literacy	\square	\square	\square	\square
Numeracy	\square	\square	\square	\square
Personal and social capability	\square	\square	\square	\square

Cross-curriculum priorities	Units			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Aboriginal and Torres Strait Islander histories and cultures	\square	\square	\square	\square
Asia and Australia's engagement with Asia	\square	\square	\square	\square
Sustainability	\square	\square	\square	\square

cc) © State of Queensland (QCAA) 2023
 www.qcaa.qld.edu.au/copyright.
Unless otherwise indicated material from the Australian Curriculum is © ACARA 2010-present, licensed under CC BY 4.0. For the latest information and additional terms of use, please check the Australian Curriculum website and its copyright notice

