Year 3 Mathematics
 Curriculum and assessment plan

Example

Level description

In Year 3, learning in Mathematics builds on each student's prior learning and experiences. Students engage in a range of approaches to learning and doing mathematics that develop their understanding of and fluency with concepts, procedures and processes by making connections, reasoning, problem-solving and practice. Proficiency in mathematics enables students to respond to familiar and unfamiliar situations by employing mathematical strategies to make informed decisions and solve problems efficiently

Students further develop proficiency and positive dispositions towards mathematics and its use as they

- become increasingly aware of the usefulness of mathematics to model situations and solve practical problems
- recognise that mathematics has conventions and language enabling the unambiguous communication of ideas and results
- experience the power of being able to manipulate numbers using a range of strategies that are based on proficiency with single-digit addition facts and their understanding of place value in the base 10 number system, partitioning and regrouping
- begin to apply their understanding of algorithms and technology to experiment with numbers and recognise patterns
- develop, extend and apply their addition and multiplication facts and related facts for subtraction and division through recognising connections between operations and develop automaticity for $3,4,5$ and 10 multiplication facts through games and meaningful practice
- learn to formulate, choose and use calculation strategies, communicating their solutions within a modelling context
- use metric units to measure and compare objects and events
- recognise the relationship between dollars and cents and learn to represent money values in different ways
- determine key features of objects and spaces, and use these when they build models and spatial representations
- undertake, with guidance, statistical investigations that are meaningful to them, making decisions about their use and representation of categorical and discrete numerical data and reporting findings
- develop a qualitative understanding of chance and use the language of chance to describe and compare the outcomes of familiar chance events
- become increasingly able to understand that different outcomes can be the results of random processes.

Context and cohort considerations
The Year 3 cohort participate in daily mathematics learning. This plan has considered:

- summative and formative data from Year 2 showing the need to support and extend on students emerging partitioning and part-whole understandings
- timing of NAPLAN in Term 1
- exploration and use of digital tools, e.g. virtual material electronic devices, software programs, in relevant contexts that support the learning and doing of mathematics.

Across the year, the contexts for teaching and learning reflect authentic learning experiences for the students Unit 1 provides an opportunity to connect to The Arts (Visual Art) learning area and Unit 2 makes connections to In Unit 3 the mathematical problems.

Duration: 10 weeks

Mathematics has its own beauty and value. It is present in nature, structures and buildings and artworks. Appreciating mathematics and identifying connections between Mathematics and other learning areas or subjects, support students to recognise the usefulness of mathematics in their world. This unit provides the context for those learnings.

In the first phase of this unit, students revise and consolidate place value understandings from Year 2. They are encouraged to notice numbers and consider 'how many in a range of contexts. Students explore the pattern and structure of the place value system, looking at the this knowledge students predict numbers in sequences, order numbers and represent numbers in multiple ways, e.g. in games, stories, discussions, with physical materials, using numerals, number lines, number charts. They partition, rename and regroup two and three-digit numbers and investigate the connection between addition and subtraction as inverse operations. Students continue to deepen number understandings as they explore patterns in number sequences. They partition numbers using materials, part-part-whole diagrams and number sentences and find unknown values. They create algorithms to show understanding of number sequences and identify patterns. Evidence of student learning is collected through a supervised assessment.

In the second phase of the unit, students deepen their appreciation of the beauty of mathematics by connecting their learning to a Visual Arts context. Students are inspired by Picasso's wooden sculptures, investigating objects and angles and identifying and discussing key features Students make objects with connecting cubes, plasticine or straws and compare the different representations. They identify angles as a measure of turn, explore angles in everyday stuations and compare angles to right angles. own sculpture using available materials. Students describe the objects within their sculpture using key features and identify angles within their sculpture, comparing them to a right angle. Critical and creative thinking skills are encouraged as students analyse representations and identify and make connections between mathematical understandings and their sculpture. The sculpture and written description form part of students' investigation folio for this unit.

Duration: 10 weeks

Mathematics supports learners to develop critical and creative thinking, problem-solving and design thinking skills. In this unit, students are provided with the opportunity o apply the
solutions.

In the first phase of this unit, students deepen their understandings of natural numbers from Unit 1 to explore numbers beyond 10000 . Critical and creative thinking skill are deepened as students expand on their understanding of number by ordering and representing numbers in new and creative ways, e.g. renaming numbers and exploring patterns in place value names and spaces. Students engage with picture books that explore the notion of how quantification of number. Evidence of student learning is ollected through a learning journal where students espond to a number talk and represent a natural nu beyond 10000 in multiple ways. They then provide a sho spoken/signed explanation of their representations.

In the second phase of this unit, students develop problem solving and design thinking skills as they connect their Mathematics and Design and Technologies knowledge understanding and skills. In this project, students are presented with the opportunity to design their own play space. Building on from Unit 1, students explore mathematics in their everyday life and consider it usefulness in helping them seek a solution to a real-life context. In order to make informed decisions about size and scale, students develop an understanding of forma units of measure to explore play spaces in their school environment. They create calibrated scales and connect heir understandings to centimetres and metres. Students use trundle wheels and metre paper strips to estimate and measure the length of play spaces. Students then conduc a guided statistical investigation, developing questions to investigate features of play spaces. They use lists, tables graphs. Students may use digital tools to record and raphs. Students may use devls from the reord and used to inform their play space designs. Students consider the placement of a play space in the school. They create a two-dimensional representation of their school environmen from a top view perspective, identifying key landmarks and incorporating their play space design ideas. They swap their maps with a partner, interpreting their design and providing feedback on the features. Evidence of learning will be collected in an investigation folio to accompany their Design and Technologies project folio.

Duration: 10 weeks

Real-world, practical investigations provide students with opportunities to explore the usefulness and value of mathematics learning. In this unit, students engage in realworld applications and problem-solving situations within th context of a school fete, developing proficiency in mathematics by exploring concepts, skills and procedures.

In this unit, through the context of the school fete, students develop proficiency with concepts, skills and procedure and make connections in order to solve problems and communicate their solutions. Students roleplay stall holder to investigate financial and practical problems. They use concrete materials to recognise the relationship between They extend on num to add and subtract two and three digit numbers, using place value and partitioning to assist in calculations Students apply partitioning understandings and additis strategies to model and solve practical problems for the fete, selling items and calculating change. In preparation for the school fete students also explore the relationship between formal units of time including days, hours, minutes and seconds. They read and connect analog and digital times, using the language of time and represent times on an analog clock using the markings and positions of the hands to the nearest minute. Students estimate and compare duration of events, planning a sequence of activities they would like to participate in at the school fete.

Evidence of student learning from this unit will be collected through a proposal where students identify a plan for the day to share with parents and/or caregivers. Students record an itinerary, identifying times, activities, costing and estimation of how long each activity will take. They include their calculations using number sentences, calculation strategies and use estimation to check the reasonableness
of calculations. of calculations.

Duration: 10 weeks
Mathematical understanding is strengthened when students make connections between concepts and apply their understandings to familiar and unfamiliar situations. Throughout this unit, students progressively build upon heir prior knowledge as they engage in exploring practica scenarios that connect concepts such as multiplication, division, fractions, mass, capacity and chance experiments.

In the first phase of this unit, students expand upon the experiences in Unit 3 to explore practical situations involving single-digit multiplication and division. Students ecall multiplication facts for twos, threes, fours, fives and ens, using a range of strategies. They make connection to the part-part-whole model to visually represent the diagrams, arrays, Think Boards and concrete materials to epresent problems in a variety of ways and deepen their understanding of calculation strategies. Students then evise and consolidate fractional understandings from 2 and extend on that knowledge to represent unit fractions and their multiples in different ways. In hands-on experiences, they cut objects into equal parts and share collections of objects evenly into groups. They demonstrate the connection between parts and the whole, and the connection of fractions to division. The notion of parts and wholes is then explored in the context of mass and capacity. Students use familiar metric units when estimating and measuring the attributes of mass and capacity of everyday items and objects. They compare the mass of collections of items and individual items and compare capacity of various containers using measuring jugs, cups and scales with labelled markings.

In a supervised assessment, students model solutions to problems using materials, diagrams and number sentences. They demonstrate mathematical skills while exploring the practical applications of single-digit multiplication and division, unit fractions and attributes of mass and capacity

In the second phase of this unit, students explore the notion of fairness through a series of provocations. Students use practical activities and observations to identify and discuss
the likelihood of outcomes using terms such as 'likely', the likelinood of outcomes using terms such as likely', thinking skills are strengthened as students identify lationships between observations and the likeliho outcomes. Students conduct repeated chance experime involving dice, spinners or counters, record the results and discuss the outcomes. Students keep a record of their observations and findings in a learning journal.

Where there is one assessment item within a unit, the corresponding achievement standard aspect/s is indicated in blue.
Where there is a second assessment item within a unit, the corresponding achievement standard aspect/s is indicated in yellow.

Unit 1 - The beauty of Maths	Unit 2 - Designing a play space

Assessment 1 - Supervised assessment involving computational thinking
Description: Students respond to questions, scenarios, or problems focusing on understanding, fluency and reasoning when:

- ordering and representing natural numbers - beyond 10000
- partitioning, rearranging and regrouping twoand three-digit numbers in different ways to assist in calculations
- finding unknown values in number sentences involving addition and subtraction - using computational thinking to create algorithms when investigating numbers and exploring simple patterns.

Technique: Supervised assessment

Mode: Written

Conditions:

- up to 40 minutes, plus 5 minutes perusal and/or planning time
- may be completed over multiple lessons or broken into components in week 7

Term/ week	Assessment 3- Project	Term/ week	Assessment 5 - Project	Term/ week	Assessment 6 - Supervised assessment involving mathematical modelling	Term/ week
Term 1 Week 7	Description: In response to a teacher provided number talk, students represent and order natural numbers beyond 10000 in different ways in their learning journal, e.g. drawings, photographs/diagrams, written descriptions. Students then provide a short spoken/signed explanation of their representations. Technique: Project Mode: Multimodal Conditions: - completed in week 3 - multimodal responses up to 1 minute	Term 2 Week 3	Description: Students plan a fun day at the fete to share with their parents and/or caregivers in a written itinerary. Students propose an itinerary of activities with times, approximate durations and costing associated with the activities. They use number sentences to record calculations and estimation strategies to check the reasonableness of calculations. Technique: Project Mode: Written Conditions: - issued in week 8 and completed over multiple lessons by end of week 9 - written responses up to 200 words	Term 3 Week 9	Description: Students respond to questions, scenarios or problems focusing on all four proficiencies when: - using mathematical modelling to solve practical problems involving single-digit multiplication and division - recalling multiplication facts for twos, threes, fours, fives and tens and using a range of strategies - representing unit fractions and their multiples in different ways - using familiar metric units when estimating, comparing and measuring the attributes of objects. Technique: Supervised assessment Mode: Written and practical (using instruments with labelled metric unit markings) Conditions: - up to 40 minutes, plus 5 minutes perusal and/or planning time - may be completed over multiple lessons or broken into components in week 6 - practical responses are observed by the teacher	Term 4 Week 6

Assessment 2 - Project

Description: As part of the unit's connection to Visual Arts, students create a sculpture using familiar shapes and objects and record a written description in an investigation folio Students identify, compare and classify objects within their sculpture and describe key features. They identify and compare angles within their sculpuription and use labelled reco to support their explanation.

Technique: Project

Mode: Written and practica

Conditions:

- issued in week 8 and completed ove multiple lessons by end of week 10
- written responses up to 200 words
- practical components are observed by the teacher

Assessment 4 - Project involving a

Term 1 Description: Throughout this unit, as students
investigate play spaces and create design ideas, a series of artefacts and
representations are collected in a
investigation folio. The investigation folio
shows evidence of all four proficiencies when students are:

- using familiar metric units when estimating, comparing and measuring the attribute of length in play spaces
- interpreting and creating two-dimensional representations of familiar environments in the play space design
- conducting guided statistical investigations involving categorical and discrete numerica data
- interpreting their results in terms of the context
- recording, representing and comparing data they have collected.

Technique: Project

Mode: Written and practical (using
instruments with labelled metric unit markings) Conditions:

- issued in week 4 and completed over multiple lessons by end of week 9
- written responses up to 200 words
- practical components are observed by the teacher

Assessment 7 — Project: Probability experiment

Description: Through a learning journal, e.g. drawings, photographs/diagrams, written descriptions, students record reflections and bservations from practical chance
experiments. The journal shows annotated samples of students' learning when:

- using practical activities, observations and experiments to identify and describe outcomes and the likelihood of everyday events explaining reasoning
- conducting repeated chance experiments and discussing variation in results.

Technique: Project

Mode: Written and practical
Conditions:

- completed over multiple lessons in week 8
- written responses up to 200 words
practical components are observed by the teacher

By the end of Year 3, students order and represen natural numbers beyond 10000 . They partition, rearrange and regroup two- and three-digit numbers in different ways to assist in calculations. Students extend and use single-digit addition and related subtraction facts and apply additive strategies to model and solve problems involving two- and three-digit numbers. They use mathematical modelling to solve practical problems involving single-digit multiplication and division, recalling multiplication facts for twos, threes, fours, fives and tens, and using a range of strategies. Students represent unit fractions and their multiples in differentway they and other calculations. Students find unknown values in number sentences involving addition and subtraction. They create algorithms to investigate numbers and explore simple patterns.

Students use familiar metric units when estimating comparing and measuring the attributes of objects and events. They identify angles as measures of turn and compare them to right angles. Students estimate and They represent money values in different ways. Students make, compare and classify objects using key features. They interpret and create two-dimensional representations of familiar environments.

Students conduct guided statistical investigations involving categorical and discrete numerical data, and interpret their results in terms of the context. They record, represent and compare data they have collected. Students use practical activities, observation or experiment to identify and describe outcomes and the likelihood of everyday events explaining reasoning. They variation in rated chance experiments and discus variation in results.
Consensus: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 3, students order and represen natural numbers beyond 10000 . They partition, rearrange and regroup two- and three-digit numbers in different ways to assist in calculations. Students extend and use single-digit addition and related subtraction facts and apply additive strategies to model and solve problems involving two- and three-digit numbers. They use mathematical modelling to solve practical problems involving single-digit multiplication and division, recalling multiplication facts for twos, threes, fours, fives and tens, and using a range of strategies. Students represent unit fractions and heir multiples in different ways. They make and other calculations. Students find unknown values in number sentences involving addition and subtraction They create algorithms to investigate numbers and explore simple patterns.

Students use familiar metric units when estimating comparing and measuring the attributes of objects and events. They identify angles as measures of turn and compare them to right angles. Students estimate and compare measures of duration using formal units of time. make, compant money values in different ways. Sudent They interpret and create two-dimensional representations of familiar environments.

Students conduct guided statistical investigations involving categorical and discrete numerical data, and interpret their results in terms of the context. They record, represent and compare data they have collected. Students use practical activities, observation or likelihood to identify and describe outcomes and the conduct repeated chance experiments and discus variation in results.
Calibration: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 3, students order and represent natural numbers beyond 10000 . They partition, rearrange and regroup two- and three-digit numbers in different ways to assist in calculations. Students extend and use single-digit addition and related subtraction facts and apply additive strategies to model and solve problems involving two- and three-digit numbers. They use mathematical modelling to solve practical problems involving single-digit multiplication and division, recalling multiplication facts for twos, threes, fours, fives and tens, and using a range of strategies. Students represent unit fractions and their multiples in different ways. They make and olher calutions Studen find unknow values in number sentences involving addition and subtraction. They create algorithms to investigate numbers and explore simple patterns.

Students use familiar metric units when estimating comparing and measuring the attributes of objects and events. They identify angles as measures of turn and compare them to right angles. Students estimate and compare measures of duration using formal units of time They represent money values in different ways. Students make, compare and classify objects using key features. They interpret and create two-dimensional representations of familiar environments.

Students conduct guided statistical investigations involving categorical and discrete numerical data, and interpret their results in terms of the context. They record, represent and compare data they have collected. Students use practical activities, observation or experiment to identify and describe outcomes and the likelihood of everyday events explaining reasoning. They conduct repeated chance experiments and discuss variation in results.
Consensus: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

By the end of Year 3, students order and represen natural numbers beyond 10000 . They partition, rearrange and regroup two- and three-digit numbers in different ways to assist in calculations. Students extend and use single-digit addition and related subtraction facts and apply additive strategies to model and solve problems involving two- and three-digit numbers. They use mathematical modelling to solve practical problems involving single-digit multiplication and division, recalling multiplication facts for twos, threes, fours, fives and tens, and using a range of strategies. Students represent unit raclions and heir muliples in diferent ways. They make and other calculations. Students find unknown values in number sentences involving addition and subtraction. They create algorithms to investigate numbers and explore simple patterns.

Students use familiar metric units when estimating, comparing and measuring the attributes of objects and events. They identify angles as measures of turn and compare them to right angles. Students estimate and compare measures of duration using formal units of time They represent money values in different ways. Student make, compare and classify objects using key features. They interpret and create two-dimensional representations of familiar environments.

Students conduct guided statistical investigations involving categorical and discrete numerical data, and interpret their results in terms of the context. They record, represent and compare data they have collected experiment to identify and describe outcomes and the likelihood of everyday events explaining reasoning. They conduct repeated chance experiments and discuss variation in results.

Expert: Refer to QCAA moderation advice on the QCAA website under the Assessment tab in the learning area.

Content descriptions	Units				Content descriptions Algebra	Units				Content descriptions Measurement	Units			
Number	1	2	3	4		1	2	3	4		1	2	3	4
recognise, represent and order natural numbers using naming and writing conventions for numerals beyond 10000 AC9M3N01	V	\square	\square	\square	recognise and explain the connection between addition and subtraction as inverse operations, apply to partition numbers and find unknown values in number sentences AC9M3A01	V	\square	\square	\square	identify which metric units are used to measure everyday items; use measurements of familiar items and known units to make estimates AC9M3M01	\square	V	\square	\checkmark
recognise and represent unit fractions including $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{10}$ and their multiples in different ways; combine fractions with the same denominator to complete the whole AC9M3N02	\square	\square	\square	\square	extend and apply knowledge of addition and subtraction facts to 20 to develop efficient mental strategies for computation with larger numbers without a calculator AC9M3A02	\square	\square	V	\square	measure and compare objects using familiar metric units of length, mass and capacity, and instruments with labelled markings AC9M3M02	\square	V	\square	V
add and subtract two- and three-digit numbers using place value to partition, rearrange and regroup numbers to assist in calculations without a calculator AC9M3N03	\square	\square	V	\square	recall and demonstrate proficiency with multiplication facts for 3, 4, 5 and 10; extend and apply facts to develop the related division facts AC9M3A03	\square	\square	\square	V	recognise and use the relationship between formal units of time including days, hours, minutes and seconds to estimate and compare the duration of events AC9M3M03	\square	\square	\checkmark	\square
multiply and divide one- and two-digit numbers, representing problems using number sentences, diagrams and arrays, and using a variety of calculation strategies AC9M3N04	\square	\square	\square	\square						describe the relationship between the hours and minutes on analog and digital clocks, and read the time to the nearest minute AC9M3M04	\square	\square	V	\square
estimate the quantity of objects in collections and make estimates when solving problems to determine the reasonableness of calculations AC9M3N05	\square	\square	V	\square						identify angles as measures of turn and compare angles with right angles in everyday situations AC9M3M05	V	\square	\square	\square
use mathematical modelling to solve practical problems involving additive and multiplicative situations including financial contexts; formulate problems using number sentences and choose calculation strategies, using digital tools where appropriate; interpret and communicate solutions in terms of the situation AC9M3N06	\square	\square	V	\checkmark						recognise the relationships between dollars and cents and represent money values in different ways AC9M3M06	\square	\square	\checkmark	\square
follow and create algorithms involving a sequence of steps and decisions to investigate numbers; describe any emerging patterns AC9M3N07	V	\square	\square	\square										

Content descriptions	Units				Content descriptions Statistics	Units				Content descriptions Probability	Units			
Space	1	2	3	4		1	2	3	4		1	2	3	4
make, compare and classify objects, identifying key features and explaining why these features make them suited to their uses AC9M3SP01	V	\square	\square	\square	acquire data for categorical and discrete numerical variables to address a question of interest or purpose by observing, collecting and accessing data sets; record the data using appropriate methods including frequency tables and spreadsheets AC9M3ST01	\square	■	\square	\square	identify practical activities and everyday events involving chance; describe possible outcomes and events as 'likely' or 'unlikely' and identify some events as 'certain' or 'impossible' explaining reasoning AC9M3P01	\square	\square	\square	V

$\mathrm{ACiQ} \mid \mathrm{v} 9.0$

Content descriptions	Units				Content descriptions	Units				Content descriptions	Units			
interpret and create two dimensional representations of familiar environments, locating key landmarks and objects relative to each other AC9M3SP02	\square	-	\square	\square	create and compare different graphical representations of data sets including using software where appropriate; interpret the data in terms of the context AC9M2ST02	\square	V	\square	\square	conduct repeated chance experiments; identify and describe possible outcomes, record the results, recognise and discuss the variation AC9M3P02	\square	\square	\square	V
					conduct guided statistical investigations involving the collection, representation and interpretation of data for categorical and discrete numerical variables with respect to questions of interest AC9M3ST03	\square	V	\square	\square					

General capabilities	Units			
	1	2	3	4
Critical and creative thinking	\square	\checkmark	∇	∇
Digital literacy	\square	V	\square	\square
Ethical understanding	\square	\square	\square	\square
Intercultural understanding	\square	\square	\square	\square
Literacy	V	V	\square	\square
Numeracy	\checkmark	\square	V	V
Personal and social capability	\square	\square	\square	\square

Cross-curriculum priorities	Units			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Aboriginal and Torres Strait Islander histories and cultures	\square	\square	\square	\square
Asia and Australia's engagement with Asia	\square	\square	\square	\square
Sustainability	\square	\square	\square	\square

(c)(i) © State of Queensland (QCAA) 2023

 www.qcaa.qld.edu.au/copyright.
Unless otherwise indicated material from the Australian Curriculum is © ACARA 2010-present, licensed under CC BY 4.0. For the latest information and additional terms of use, please check the Australian Curriculum website and its copyright notice.

