Years 7-10 Mathematics

Australian Curriculum Version 9.0: Sequence of achievement standards

The table below provides a sequence of achievement standards for Years 7-10 Mathematics, organised by content strands. A similar resource is available for Prep-Year 6 Mathematics.

Year 7

By the end of Year 7, students represent natural numbers in expanded form and as products of prime factors, using exponent notation. They solve problems involving squares of numbers and square roots of perfect square numbers. 4 operations in calculations
뜽 calculat positive fractions and decimals, choosing efficient equivalent representations of rational between

- percentages to assist ins of rational numbers and

玉 mathematical modelling to solve practical use involving rational numbers, percentages and ratios, in financial and other applied pentexts, justifying choices representation. Students use algebraic expressions to represent situations, describe the relabsituts between variables from authentic data and subs. They solve formulas to determine unknown solutions. Students create tables of values related to algebraic expressions and formulas, and describe the effect of variation

They apply knowledge of angle relationships and the sum of angles in a triangle to solve problems, giving reasons. Students use formulas for the areas of triangles and
parallelograms and the volumes of rectangular and
 triangular prisms to solve problems. They describe the relationships between the radius, diameter and circumference of a circle. Students classify polygons according to their features and create an algorithm objects two-dimensionally in different ways, describing the usefulness of these representations. Students use
$\stackrel{\text { ® }}{\text { © }}$ coordinates to describe transformations of points in the plane.

They plan and conduct statistical investigations involving discrete and continuous numerical data, using appropriate displays. Students interpret data in terms of the shape of distribution and summary statistics, identifying possible
outliers. They decide which measure of central tendency is most suitable and explain their reasoning. Students list sample spaces for single step experiments, assign
Drobabilities to outcomes and predict relative frequencies
$\stackrel{\sim}{ \pm}$ for related events. They conduct repeated single-step
$\stackrel{5}{\omega}$ giving reasons for differences between predicted and observed results.

Year 8
By the end of Year 8, students recognise irrational numbers and terminating or recurring decimals. They apply positive integer exponents. Students solve problems involving the 4 operations with integers and positive rational numbers. They use mathematical modelling to solve practical problems involving ratios, percentages and rates in measurement and financial contexts. Students apply algebraic properties to rearrange, expand and factorise linear expressions. They graph linear relations and solve linear equations with rational solutions and onevariable inequalities, graphically and algebraically. Students use mathenatical modeling to solve problems in context They make nand test coniectures involving line relations using digital tools.

Students use appropriate metric units when solving measurement problems involving the perimeter and area of composite shapes, and volume of right prisms. They use Pythagoras' theorem to solve measurement problems involving unknown lengths of right-angle triangles. Students use formulas to solve problems involving the are and circumference of circles. They solve problems of duration involving 12-and 24 -hour cycles across multiple describe position. They identify conditions for congruen and similarity in shapes and create and test algorithms designed to test for congruency and similarity, Students apply the properties of quadrilaterals to solve problems. apply the properties of quadrilaterals to solve problems.

They conduct statistical investigations and explain the implications of obtaining data through sampling. Students analyse and describe the distribution of data. They compare the variation in distributions of random samples the same and different size from a given population with respect to shape, measures of central tendency and range Students represent the possible combinations of 2 events with tables and diagrams, and determine related experiments and simulations using digital tools to determine related probabilities of compound to

Year 9
By the end of Year 9, students recognise and use rational and irrational numbers to solve problems. They extend and apply the exponent laws with positive integers to variables Students expand binomial products, and factorise monic quadric expressions. They n and the gradient and points on the Cartesian plane, and the gradient and modelling to solve problems involving change in financia and other applied contexts, choosing to use linear and quadratic functions. They graph quadratic functions and solve monic quadratic equations with integer roots algebraically. Students describe the effects of variation of parameters on functions and relations, using digital too algebraic representations.

They apply formulas to solve problems involving the surface area and volume of right prisms and cylinders. Students solve problems involving ratio, similarity and scale in two-dimensional situations. They determine percentage errors in measurements. Students apply Pythagoras' theorem and use trigonometric ratios to solve problems involving right-angled triangles. They use mathematical modelling to solve practical problems model and communicating their methods and findings the Students express small and large numbers in scientific notation. They apply the enlargement transformation to images of shapes and objects, and interpret results. Students design, use and test algorithms based on geometric constructions or theorems.

They compare and analyse the distributions of multiple numerical data sets, choose representations, describe features of these data sets using summary statistics and the shape of distributions, and consider the effect of outliers. Students explain how sampling techniques and epresentation can be used to support or question conclusions or to promote a point of view. They determine sets of outcomes for compound events and represent hese experiments or simulation for combined events using digital tools.

Year 10
By the end of Year 10, students recognise the effect of approximations of real numbers in repeated calculations involving mathematical modelling to solve problems situations growth and decay in financial and other applied fualions, applying linear, quadratic and exponention numerically and conjectures involving functions and relations using digita tools. They solve problems involving simultaneous linear equations and linear inequalities in 2 variables graphically and justify solutions.

Students interpret and use logarithmic scales representing small or large quantities or change in applied contexts They solve measurement problems involving surface area and volume of composite objects. Students apply Pythagoras' theorem and trigonometry to solve practica problems involving right-angled triangles. They identify the impact of measurement errors on the accuracy of practical prols use ming altion evaluating and modifying models, and reporting assumptions, methods and findings. They use deductive reasoning, theorems and algorithms to solve spatial problems. Students interpret networks used to represen practical situations and describe connectedness.

They plan and conduct statistical investigations involving bivariate data. Students represent the distribution of data involving 2 variables, using tables and scatter plots, and comment on possible association. They analyse inferences and conclusions in the media, noting potential sources of bias. Students compare the distribution of continuous numerical data using various displays, and
discuss distributions in terms of centre, spread shape and discuss distributions in terms of centre, spread, shape and problems involving compound pevents. Students de conduct simulation involving conditional probability us conduct simulations involving conditional probabiity, using

More information

If you would like more information, please visit the QCAA website www.qcaa.qld.edu.au. Alternatively, email the K-10 Curriculum and Assessment branch at australiancurriculum@qcaa.qld.edu.au.
(c) (i) © State of Queensland (QCAA) 2022
 www.qcaa.qld.edu.au/copyright.
Unless otherwise indicated, material from Australian Curriculum is © ACARA 2010-present, licensed under CC BY 4.0. For the latest information and additional terms of use, please check the Australian Curriculum website and its copyright notice.

