Common graphical representations
Encountered by students in Years 7-10

Representation type				
Table				
Comparison of fixed deposit interest rates across financial institutions				
Fixed deposit interest rates				
Name of bank	$\begin{gathered} 180 \\ \text { days - } \\ 1 \text { year } \end{gathered}$	$\begin{gathered} 1-3 \\ \text { years } \end{gathered}$	$\begin{gathered} 3-5 \\ \text { years } \end{gathered}$	5 years or more
State Bank	8.50\%	10.25\%	9.75\%	10.00\%
Empire Bank	8.00\%	9.25\%	9.75\%	9.75\%
Community Bank	10.10\%	10.50\%	9.75\%	9.00\%
Bank of KBR	9.40\%	9.00\%	9.00\%	8.75\%

Introduced in the Australian Curriculum

- Commonly used across Economics and

Business, Geography, Mathematics and Science to collect and organise information, and make
inferences inferences

Dot plot

Introduced in the Australian Curriculum

- Year 2 Mathematics: construct and interpret simple dot plots
- Year 7 Mathematics: construct, interpret and compare variation and distribution of data
- includes a title
- has one axis labelled
- can be constructed horizontally or vertically
- horizontal is usually preferred
- presents dots evenly spaced so they can be clearly delineated
- lists ordinal data along the axis
- the dots represent the total number of observations
- uses unordered data to construct a graph
- requires correct alignment of dots either vertically and/or horizontally
- presents possibility for placement of data in wrong column
- offers an easy method for finding the mode, range and median
- is used to represent
- discrete numerical data - both types of categorical data
- construct a class graph using students or objects as 'pictures'; photograph and discuss
- conduct directed activities related to texts (DARTs), e.g.
- provide a dot plot without a title or an axis label and ask students to predict what it could be and justify their choices demonstrate the types of questions that could be answered from the data and then ask students to construct their own questions
- expose students to vertical and horizonta graphs
- demonstrate the link to column graphs by drawing boxes around the columns

Introduced in Australian Curriculum

- Year 7 Geography: represent and interpret data
in back-to-back histograms (population pyramids)
- Year 9 Mathematics: construct and describe
- plots the independent variable on the x-axis (horizontal)
- plots the dependent variable on the y-axis (vertical)
- considers the range of observations and splits them into a logical series of intervals or bins
- marks the lower value of each interval on the x-axis
- draws a bar extending from the lower value of one interval to the lower value of the nex
- makes the height of each bar equal to th frequency of its corresponding bin
- places a value that falls into two bins in the upper bin
- requires a half-column width before the firs column of the histogram if the x-axis doesn start at zero
- requires the data to be split into logical series (ranges) of intervals to create the bins
- is open to the mistake of counting in increments to create intervals and interpret graphs
- is open to the mistake of a half-column width before the first column if the x-axis does not start at zero
presents the possibility of misinterpreting bimodal and skewed data

Scatter plot

Introduced in Australian Curriculum

- Year 9 Economics and Business: represent, interpret and analyse
Year 10 Mathematics: use to investigate and comment on relationships
- is constructed in a similar way to a line graph
plots the independent variable o
the x-axis (horizontal)
plots the dependent variable on the y-axis (vertical)
- plots pairs of data points on a Cartesian plane (x, y)
- leaves plots unjoined by a line
- adds a line of best fit where appropriate
- uses a 'scale break' (a zigzag on the line the x-or y-axis) to indicate the omitted portion where an axis scale does not start at zero

- requires

that the order of x - and y-coordinates are not confused when plotting
that independent and dependent
variables are placed on the correct axis

- an appropriate choice of scale to fit the data range
- an appropriate choice of scale increment to accurately reflect trends in the data - the ability to establish 'true' outliers
- is open to the mistake of assuming one variable caused the other. However, there need to consider that both may be influenced by a third variable
- provides a summary graphical presentation
showing the shape and distribution of the data
- is used for displaying large datasets
- represents relative frequencies of valu intervals
- conceals the original data, i.e. the observations that lie in the range of each bin cannot be seen, making it impossible to data
conduct directed activities related to texts (DARTIs), e.g.
provide a graph with missing information for students to complete and justify their choices
demonstrate the types of questions that could be answered from the data, then questions
explore cases where the scaling of the y axis has been used to create a particular message
- present histograms using data from increasingly large datasets to highlight tha the larger the dataset, the more accu
the picture provided by a histogram
examine the effect of changing the bin siz and discuss best choices to represent particular datasets
- displays large datasets to explore relationships and/or trends between variables
illustrates the degree to which one variable is influenced or affected by another
conduct directed activities related to texts (DARTs), e.g.
provide a graph with missing information and ask students to complete it and justify demonstrate the types of questions that students to construct their own questions
lup linked ie causation or association
ride
- similar number of scater plob with or labels or labels
ask them to match each table with one of the scatter plots and then label the axe for each scatter plot
discuss which type of representation is more effective

Representation type			
Box plot			
Mid-year test results for Year 10 Science			
40			

Introduced in Australian Curriculum

- Year 10 Mathematics: construct, interpret and compare

Mid-year test results for Year 10 Science

- displays a dataset based on its five-number summary, that is
- the minimum or smallest data point in the dataset (excluding any outliers)
lower or first quartile, the 25th percentile or the middle value betwe
the median or middle value in the datase
- upper or third quartile, the 75th percentile or the middle value between the median and the largest number
the maximum or largest data point in the dataset (excluding any outliers)
- requires correctly
- determining the values for the fivenumber summary establishing 'true' outliers
- provides an efficient and common way of
representing a statistical summary of a dataset
- is used to show overall patterns of response for a group
- conceals individual data points
- offers a compact way of comparing distributions between groups of datasets
- collates datasets from groups/classes to illustrate how larger datasets provide mor reliable results
introduce box plots by constructing a wholeclass graph, e.g.
place students schoobags in order by weight across the classroom
label the bags that are the minimum (lightest), maximum (heaviest) and median data points
jointly calculate the lower and upper quartiles and use coloured string to 'box' off students' bags between these two points
use a white string to create the 'whiskers' take a photo of the resulting graph for later discussion
- ask students to form two groups and create their own dataset (e.g. number of pets they have owned, how many words they can think of starting with V in one minute), then represent it with a box plot
model statements you could make based on the box plots
encourage students to create true or false encourage students to create
questions relating to the data

Notes
Variables
DARTs

Two broad groupings of variables can be included in data collection - categorical and numerical.

- Categorical variables are variables whose values are categories, e.g. blood group is a categorical variable with the common categories being: $\mathrm{A}, \mathrm{B}, \mathrm{AB}$ and O . Categorical variables can be further divided into two sub-groups
- ordinal - data has a rank or numerical position, e.g. satisfaction rating, report grades, Olympic race placegetters
- nominal - data is sorted into named categories, where there is no rank to the categories, e.g. blood type, method of travel, hair colour, ice-cream flavour.
- Numerical variables are variables whose values are numbers and for which processes such as calculating an average make sense

Numerical variables can be further divided into two sub-groups

- discrete - usually a whole number count, e.g. school population, cricket score, number in a family
- continuous - usually a measurement, e.g. temperature, weight, volume, swim race times.

Directed activities related to texts (DARIs) are, in this context, activities designed to encourage critical analysis of representations.
DARTs are used as a strategy for enhancing understanding of conventions and improving data comprehension, e.g

- reconstruction activities where students complete information that has been intentionally omitted from a graphical representation (title, labels, key frequencies) and discuss their decisions
- questioning activities that encourage a more critical examination of the data, its source and the type of questions that it could answer.

References

 its copyright notice
British Council, Interacting with Texts: Directed activities related to texts (DARTs), www.teachingenglish.org.uk/article/interacting-texts-directed-activities-related-texts-darts
(c) (i) © State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence. Attribution (include the link): © State of Queensland (QCAA) 2022 www.qcaa.qld.edu.au/copyright.

