Common graphical representations

Encountered by students in Years 7–10

<table>
<thead>
<tr>
<th>Representation type</th>
<th>Graphing conventions</th>
<th>Common difficulties</th>
<th>Considerations for use</th>
<th>Possible teaching and learning strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison of fixed deposit interest rates across financial institutions</td>
<td>includes a title</td>
<td>requires students to be fluent with using a grid-referencing strategy (Row, Column) to be able to read and interpret the information in two-way tables</td>
<td>provides an easy method for gathering and organising both categorical and numerical data</td>
<td>conduct directed activities related to texts (DARTs), e.g.</td>
</tr>
<tr>
<td>Fixed deposit interest rates</td>
<td>uses labels for individual categories</td>
<td>shows frequencies for categories in a one-way table</td>
<td>examines relationships between categorical variables in a two-way table</td>
<td>- provide a table without a title, without some of the category labels, or with information missing, for students to complete and justify their choices</td>
</tr>
<tr>
<td>Name of bank</td>
<td>presents data in a one-way table for one categorical variable (observed number or frequency), e.g. “Comparison of interest rates available at the State Bank”</td>
<td>presents data in a two-way table for two variables (rows are one category and columns are the other category), e.g. “Comparison of interest rates across financial institutions”</td>
<td>- demonstrate the types of questions that could be answered with the data, then ask students to construct their own questions</td>
<td></td>
</tr>
<tr>
<td>180 days – 1 year</td>
<td>requires students to be fluent with using a grid-referencing strategy (Row, Column) to be able to read and interpret the information in two-way tables</td>
<td>requires students to be fluent with using a grid-referencing strategy (Row, Column) to be able to read and interpret the information in two-way tables</td>
<td>- provide unorganised information in a two-way table and ask students to sort the information and discuss any trends</td>
<td></td>
</tr>
<tr>
<td>3–5 years</td>
<td>shows frequencies for categories in a one-way table</td>
<td>is used to represent changes to a variable over time</td>
<td>- explore newspaper articles with statistics relevant to the students</td>
<td></td>
</tr>
<tr>
<td>5 years or more</td>
<td>examines relationships between categorical variables in a two-way table</td>
<td>time is always plotted on the x-axis</td>
<td>- construct a class graph — students use coordinates to position themselves on a graph, connect the points with a string, photograph and discuss</td>
<td></td>
</tr>
</tbody>
</table>

Line graph	often uses time as the independent variable	requires that order of (x, y) coordinates are not confused when plotting	is used to represent changes to a variable over time	construct directed activities related to texts (DARTs), e.g.
	plots the independent variable on the x-axis (horizontal)	that independent and dependent variables are placed on the correct axis	time is always plotted on the x-axis	- provide a graph with missing information for students to complete and justify their choices
	places the dependent variable on the y-axis (vertical)	an appropriate choice of scale range to fit the data range	- demonstrate the types of questions that could be answered from the data, then ask students to construct their own questions	
	creates suitable scale increments based on range of data	an appropriate choice of scale increments to accurately reflect trends in the data	ask students to analyse a line graph in groups and discuss possible scenarios matching the line trajectory before whole-class sharing	- ask students to analyse a line graph in groups and discuss possible scenarios matching the line trajectory before whole-class sharing
	connects points with a line		examine the effect of changing the scale increments, discuss how this affects the apparent message of the graph	- examine the effect of changing the scale increments, discuss how this affects the apparent message of the graph

Fixed deposit interest rates

<table>
<thead>
<tr>
<th>Name of bank</th>
<th>180 days – 1 year</th>
<th>3–5 years</th>
<th>5 years or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>State Bank</td>
<td>8.50%</td>
<td>10.25%</td>
<td>9.75%</td>
</tr>
<tr>
<td>Empire Bank</td>
<td>8.00%</td>
<td>9.25%</td>
<td>9.75%</td>
</tr>
<tr>
<td>Community Bank</td>
<td>10.10%</td>
<td>10.50%</td>
<td>9.75%</td>
</tr>
<tr>
<td>Bank of KBR</td>
<td>9.40%</td>
<td>9.00%</td>
<td>9.00%</td>
</tr>
</tbody>
</table>

Introduction in the Australian Curriculum

- Commonly used across HPE, HASS, Languages, Mathematics and Science to collect and organise information, and make inferences
Frequency histogram

<table>
<thead>
<tr>
<th>Gross weekly income of 14–17-year-old students attending Silver Skies High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of students</td>
</tr>
<tr>
<td>Gross weekly income</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Introductions in Australian Curriculum
- **Year 7 Geography**: represent and interpret data in back-to-back histograms (population pyramids)
- **Year 9 Mathematics**: construct and describe

Considerations for use
- Is used to represent numerical data
- Can be created quickly by hand to inspect data patterns when the dataset is reasonably small
- Shows the shape and distribution of the data for comparison with other datasets
- Is useful in calculating quantities such as the median, mode and range as all individual data values are represented

Possible teaching and learning strategies
- Conduct directed activities related to texts (DARTS), e.g.
 - Provide a graph with missing information for students to complete and justify their choices
 - Demonstrate the types of questions that could be answered from the data, then ask students to construct their own questions
 - Explore cases where the scaling of the y-axis has been used to create a particular message
- Present histograms using data from increasingly large datasets to highlight that the larger the dataset, the more accurate the picture provided by a histogram
- Examine the effect of changing the bin size and discuss best choices to represent particular datasets

Stem-and-leaf plot

Maximum heart rate during a 20-minute exercise routine

<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8 9</td>
</tr>
<tr>
<td>13</td>
<td>0 1 2 3 6</td>
</tr>
<tr>
<td>14</td>
<td>1 2 3 7 8</td>
</tr>
<tr>
<td>15</td>
<td>0 3 4 5 6 9</td>
</tr>
<tr>
<td>16</td>
<td>0 2 2 2 3 6</td>
</tr>
</tbody>
</table>

Key
- 12 | 8 = 128 beats per minute

Graphing conventions
- Requires understanding of how to use place value to create the stem and the values in the leaf
- Is open to misconception that the median is always represented by the middle value in the leaf that belongs to the middle stem value
- Becomes unwieldy when used for larger datasets

Common difficulties
- Requires understanding of how to use place value to create the stem and the values in the leaf
- Is open to misconception that the median is always represented by the middle value in the leaf that belongs to the middle stem value
- Becomes unwieldy when used for larger datasets

Possible teaching and learning strategies
- Construct a class graph — students record personal data (e.g. length of breath hold)
- Promote students to
 - Form groups (leaves) based on their data
 - Order the leaves within a group
 - Use the common part of each dataset as a stem, etc.
- Demonstrate plot construction using imagery of a plant stem with leaves coming off one side — add data points sequentially to demonstrate graph construction
<table>
<thead>
<tr>
<th>Representation type</th>
<th>Graphing conventions</th>
<th>Common difficulties</th>
<th>Considerations for use</th>
<th>Possible teaching and learning strategies</th>
</tr>
</thead>
</table>
| Scatter plot | is constructed in a similar way to line graphs
 - plots the independent variable on the x-axis (horizontal)
 - plots the dependent variable on the y-axis (vertical)
 - plots pairs of data points on a Cartesian plane \((x, y)\)
 - leaves plots unjoined by a line
 - adds a line of best fit where appropriate
 - uses a 'scale break' (a zigzag on the line of the x- or y-axis) to indicate the omitted portion where an axis scale does not start at zero | requires
 - that the order of \((x, y)\) coordinates are not confused when plotting
 - that independent and dependent variables are placed on the correct axis
 - an appropriate choice of scale range to fit the data range
 - an appropriate choice of scale increments to accurately reflect trends in the data
 - the ability to establish 'true' outliers | displays large datasets to explore relationships and/or trends between variables
 illustrates the degree to which one variable is influenced or affected by another | conduct directed activities related to texts (DARTs), e.g.
 - provide a graph with missing information and ask students to complete it and justify
 - demonstrate the types of questions that could be answered from the data and ask students to construct their own questions
 - explore ways in which variables might be linked, i.e. causation or association
 - provide students with data tables and a similar number of scatter plots with no title or labels
 - ask them to match each table with one of the scatter plots and then label the axes for each scatter plot
 - discuss which type of representation is more effective |
| Box plot | displays a dataset based on its five-number summary, that is:
 - the minimum or smallest data point in the dataset (excluding any outliers)
 - lower or first quartile, the 25th percentile or the middle value between the median and the smallest number
 - the median or middle value in the dataset
 - upper or third quartile, the 75th percentile or the middle value between the median and the largest number
 - the maximum or largest data point in the dataset (excluding any outliers) | requires correctly
 - determining the values for the five-number summary
 - establishing 'true' outliers | provides an efficient and common way of representing a statistical summary of a dataset
 is used to show overall patterns of response for a group
 conceals individual data points
 offers a compact way of comparing distributions between groups of datasets
 collates datasets from groups/classes to illustrate how larger datasets provide more reliable results | introduce box plots by constructing a whole class graph, e.g.
 - place students' schoolbags in weight order across the classroom
 - label the bags that are the minimum (lightest), maximum (heaviest) and median data points
 - jointly calculate the lower and upper quartiles and use coloured string to 'box' off students' bags between these two points
 - use a white string to create the 'whiskers'.
 - take a photo of the resulting graph for later discussion.
 - ask students to form two groups and create their own dataset (e.g. number of pets they have owned, how many words they can think of starting with V in one minute), then represent it with a box plot
 - model statements you could make based on the box plots
 - encourage students to create true or false questions relating to the data |

Introduced in Australian Curriculum

- **Year 9 Geography:** represent, interpret and analyse
- **Year 10 Mathematics:** use to investigate and comment on relationships

Mid-year test results for Year 10 Science

- **Year 10 Mathematics:** construct, interpret and compare

Common graphical representations

Encountered by students in Years 7–10

Queensland Curriculum & Assessment Authority
February 2022
Variables

<table>
<thead>
<tr>
<th>Categorical variables</th>
<th>Numerical variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables whose values are categories, e.g. blood group is a categorical variable with the common categories being: A, B, AB or O.</td>
<td>Variables whose values are numbers, and for which processes such as calculating an average make sense.</td>
</tr>
</tbody>
</table>
| Categorical variables can be further divided into two sub-groups:
 - Ordinal — an adjective describes the numerical position, e.g. satisfaction rating, report grades, Olympic medal colour
 - Nominal — data is sorted into named categories, e.g. blood type, method of travel, hair colour, ice cream flavour. | Categorical variables can be further divided into two sub-groups:
 - Discrete — usually a whole number count, e.g. school population, cricket score, number in a family.
 - Continuous — usually a measurement, e.g. temperature, weight, volume, swim race times |

DARTS

Directed activities related to texts (DARTs) are, in this context, activities designed to encourage critical analysis of representations. DARTs are used as a strategy for enhancing understanding of conventions and improving data comprehension, e.g.

- Reconstruction activities where students complete information that has been intentionally omitted from a graphical representation (title, labels, key, frequencies) and discuss their decisions
- Questioning activities that encourage a more critical examination of the data, its source and the type of questions that could be answered by the data.

References

© State of Queensland (QCAA) 2022

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright — lists the full terms and conditions, which specify certain exceptions to the licence.