Chemistry 2019 v1.4

IA1: Sample assessment instrument

Data test (10%)

This sample has been compiled by the QCAA to assist and support teachers in planning and developing assessment instruments for individual school settings.

Student name

Student number

Teacher

Exam date

Marking summary

Criterion	Marks allocated	Provisional marks
Data test	10	
Overall	10	

Conditions

Technique Data test

Unit 3: Equilibrium, acids and redox reactions

Topic/s Topic 1: Chemical equilibrium systems

Topic 2: Oxidation and reduction

Time 60 minutes + 10 minutes perusal

Seen/Unseen Unseen questions and data sets

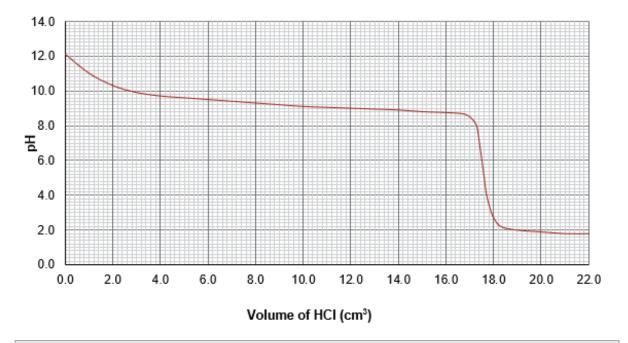
Other QCAA-approved graphics calculator permitted

Instructions

Use the datasets to respond to the associated items in the spaces provided. Each item is associated with the dataset that immediately precedes it.

Data test summary

Dataset	Item	Objective			
		Apply understanding	Analyse evidence	Interpret evidence	
	1	1			
	2		3		
1	3	1			
	4			2	
	5	3			
2	6		2		
	7	1			
	8		1		
	9			2	
	10			2	
	11			2	
Total		6	6	8	2
Percenta	ge	30%	30%	40%	100


Dataset 1

An experiment was carried out to determine the concentration of ammonia in a cleaning product. Ammonia dissociates in water to give ammonium and hydroxide according to the follow equilibrium:

$$NH_{3(aq)} + H_2O_{(1)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$$

A cleaning product was diluted 1:50. A 25.00 cm³ sample of the diluted cleaning product was titrated with 0.100 M HCl. The results are shown in Figure 1.

Figure 1: Ammonia solution titrated with HCI

Question 1 (1 mark)

Determine the pH at the equivalence point. Give your answer correct to one decimal place.

pH = (1 d.p.)

Question 2 (3 marks)		
Distinguish the half-equivalence point from the equivalence point HCl.	in terms of pH ar	nd volume of
Question 3 (1 mark)		
Determine the pK_b for ammonia. Give your answer correct to one	decimal place.	
	р <i>К_b</i> =	(1 d.p.)
Question 4 (2 marks)		
Deduce which indicator from Table 13: Acid-base indicators of the booklet would be most appropriate for this titration. Give a reason		
		•••••

Question 5 (3 marks)		
Calculate the concentration of amm three significant figures.	onia in the cleaning product. Gi	ve your answer correct to
	Concentration of ammonia =	mol dm ⁻³ (3 s.f.)

Dataset 2

An experiment was conducted to address the following research question:

What is the relationship between the reactivity series of metals and the voltage produced by a voltaic cell?

Four unknown metals, labelled A, B, C and D, were each placed into four different 1.0 M metal nitrate solutions. The qualitative results are shown in Table 1.

Samples of metals A, B, C and D were combined with their metal ion solutions to create half-cells. Pairs of half-cells were then combined to construct voltaic cells. The voltages for each voltaic cell are shown in Table 2.

Table 1: Reactions of metals

	Metal ion nitrate solution (1.0 M)				
Metal	A(NO ₃) _{2(aq)} B(NO ₃) _{2(aq)} C(NO ₃) _(aq)		C(NO ₃) _(aq)	D(NO ₃) _(aq)	
A _(s)	NR	Coating on metal	Coating on metal	Coating on metal	
B _(s)	NR	NR	NR	Coating on metal	
C _(s)	NR	Coating on metal	NR	Coating on metal	
D _(s)	NR	NR	NR	NR	

NR = no reaction

Table 2: Potential difference, in volts, for each voltaic cell with anode metal A(s)

Voltaic cell			Mean potential difference	Absolute uncertainty of			
		Trial 1	Trial 2	Trial 3	(V)	the mean (± V)	
1	B(s)	2.25	2.40	2.20	2.28	0.10	
2	C(s)	1.30	1.28	1.37	1.32	0.45	
3	D(s)	3.11	3.15	3.04	3.10	0.55	

Question 6 (2 marks)
Sequence the metals from most reactive to least reactive, giving reasons based on the data in Table 1.
Question 7 (1 mark)
Identify the voltaic cell that produced the greatest potential difference.
Question 8 (1 mark)
Identify the relationship between the difference in reactivity of the metals used to construct a voltaic cell and the potential difference produced by the cell.

Question 9 (2 marks)
Deduce whether a voltaic cell constructed using metals B and C as electrodes would produce a greater or smaller potential difference than voltaic cell 1. Give a reason for your answer.
Question 10 (2 marks)
Predict which metal would be oxidised in a voltaic cell constructed using metals B and C as electrodes. Give a reason for your answer.

Deduce the balanced equation for the voltaic cell constructed using metals B and C as electrodes.

END OF PAPER

Instrument-specific marking guide (IA1): Data test (10%)

Criterion: Data test

Assessment objectives

- 2. apply understanding of chemical equilibrium systems or oxidation and reduction to given algebraic, visual or graphical representations of scientific relationships and data to determine unknown scientific quantities or features
- 3. analyse evidence about chemical equilibrium systems or oxidation and reduction to identify trends, patterns, relationships, limitations or uncertainty in datasets
- 4. interpret evidence about chemical equilibrium systems or oxidation and reduction to draw conclusions based on analysis of datasets

The student work has the following characteristics:	Cut-off	Marks
consistent demonstration, across a range of scenarios about chemical equilibrium systems or oxidation and reduction, of selection and correct application of scientific concepts, theories, models and systems to predict outcomes, behaviours and implications	> 90%	10
 correct calculation of quantities through the use of algebraic, visual and graphical representations of scientific relationships and data correct and appropriate use of analytical techniques to correctly identify trends, patterns, relationships, limitations and uncertainty correct interpretation of evidence to draw valid conclusions. 	> 80%	9
 consistent demonstration, in scenarios about chemical equilibrium systems or oxidation and reduction, of selection and correct application of scientific concepts, theories, models and systems to predict outcomes, behaviours and implications 	> 70%	8
 correct calculation of quantities through the use of algebraic, visual and graphical representations of scientific relationships and data correct use of analytical techniques to correctly identify trends, patterns, relationships, limitations and uncertainty correct interpretation of evidence to draw valid conclusions. 	> 60%	7
adequate demonstration, in scenarios about chemical equilibrium systems or oxidation and reduction, of selection and correct application of scientific concepts, theories, models and systems to predict outcomes, behaviours and implications	> 50%	6
 correct calculation of quantities through the use of algebraic, visual and graphical representations of scientific relationships and data correct use of analytical techniques to correctly identify trends, patterns, relationships, limitations and uncertainty correct interpretation of evidence to draw valid conclusions. 	> 40%	5

The student work has the following characteristics:	Cut-off	Marks
demonstration, in scenarios about chemical equilibrium systems or oxidation and reduction, of elements, of selection and correct application of scientific concepts, theories, models and systems to predict outcomes, behaviours and implications	> 30%	4
 correct calculation of quantities through the use of algebraic, visual or graphical representations of scientific relationships or data correct use of analytical techniques to correctly identify trends, patterns, relationships, limitations or uncertainty correct interpretation of evidence to draw valid conclusions. 	> 20%	3
demonstration, in scenarios about chemical equilibrium systems or oxidation and reduction, of elements of application of scientific concepts, theories, models or systems to predict outcomes, behaviours or implications	> 10%	2
 calculation of quantities through the use of algebraic or graphical representations of scientific relationships and data use of analytical techniques to identify trends, patterns, relationships, limitations or uncertainty interpretation of evidence to draw conclusions. 	> 1%	1
does not satisfy any of the descriptors above.	≤ 1%	0

© Î © State of Queensland (QCAA) 2024

Licence: https://creativecommons.org/licenses/by/4.0 | Copyright notice: www.qcaa.qld.edu.au/copyright lists the full terms and conditions, which specify certain exceptions to the licence. | Attribution (include the link): © State of Queensland (QCAA) 2024 www.qcaa.qld.edu.au/copyright.